Hospital Variation in 30‐Day Mortality for Patients With Stroke; The Impact of Individual and Municipal Socio‐Demographic Status

Author:

Skyrud Katrine Damgaard1,Vikum Eirik1,Hansen Tonya Moen1,Kristoffersen Doris Tove1,Helgeland Jon1

Affiliation:

1. Norwegian Institute of Public Health Oslo Norway

Abstract

Background Thirty‐day mortality after hospitalization for stroke is commonly reported as a quality indicator. However, the impact of adjustment for individual and/or neighborhood sociodemographic status ( SDS ) has not been well documented. This study aims to evaluate the role of individual and contextual sociodemographic determinants in explaining the variation across hospitals in Norway and determine the impact when testing for hospitals with low or high mortality. Methods and Results Patient Administrative System data on all 45 448 patients admitted to hospitals in Norway with an incident stroke diagnosis from 2005 to 2009 were included. The data were merged with data from several databases to obtain information on vital status (dead/alive) and individual SDS variables. Logistic regression models were compared to estimate the predictive effect of individual and neighborhood SDS on 30‐day mortality and to determine outlier hospitals. All individual SDS factors, except travel time, were statistically significant predictors of 30‐day mortality. Of the municipal variables, only the municipal variable proportion of low income was statistically significant as a predictor of 30‐day mortality. Including sociodemographic characteristics of the individual and other characteristics of the municipality improved the model fit. However, performance classification was only changed for 1 (out of 56) hospital, from “significantly high mortality” to “nonoutlier.” Conclusions Our study showed that those stroke patients with a lower SDS have higher odds of dying after 30 days compared with those with a higher SDS , although this did not have a substantial impact when classifying providers as performing as expected, better than expected, or worse than expected.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3