Equal oxygen consumption rates of isovolumic and ejecting contractions with equal systolic pressure-volume areas in canine left ventricle.

Author:

Suga H,Hayashi T,Suehiro S,Hisano R,Shirahata M,Ninomiya I

Abstract

Left ventricle systolic pressure-volume area (PVA) has been found to be highly linearly correlated with cardiac oxygen consumption rate per beat (VO2) in a given canine heart with a stable inotropic background. PVA is a specific area in the pressure-volume (P-V) diagram that is bounded by the end-systolic and end-diastolic P-V relationship lines and the systolic segment of the P-V loop, consisting of the sum of external mechanical work and what is considered the end-systolic elastic potential energy in the ventricular wall. In this study, we compared VO2's of steady state entirely isovolumic and variously ejecting contractions that were made to have equal PVA's in the canine left ventricle. We found that VO2's of these isovolumic and ejecting contractions with equal PVA's (isovolumic vs. ejecting = 1008 +/- 64 (SE) vs. 1022 +/- 62 mm Hg ml/beat, n = 32 pairs in 10 hearts) were equal to each other (0.0375 +/- 0.0021 vs. 0.0368 +/- 0.0021 ml O2/beat) regardless of the marked differences in stroke volume (0 vs. 9.8 +/- 0.6 ml), end-diastolic volume (20.3 +/- 0.8 vs. 23.7 +/- 0.9 ml), end-systolic volume (20.3 +/- 0.8 vs. 13.9 +/- 0.7 ml), peak pressure (123 +/- 5 vs. 88 +/- 5 mm Hg), stroke work (0 vs. 636 +/- 36 mm Hg ml/beat), and calculated peak total wall force (1588 +/- 77 vs. 1077 +/- 72 g). Therefore, we conclude that PVA can serve as a reliable predictor of VO2 in a given canine left ventricle with a stable inotropic background whether the contraction mode is isovolumic or ejecting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference29 articles.

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3