Analysis of Dystrophin Deletion Mutations Predicts Age of Cardiomyopathy Onset in Becker Muscular Dystrophy

Author:

Kaspar Rita Wen1,Allen Hugh D.1,Ray Will C.1,Alvarez Carlos E.1,Kissel John T.1,Pestronk Alan1,Weiss Robert B.1,Flanigan Kevin M.1,Mendell Jerry R.1,Montanaro Federica1

Affiliation:

1. From the Center for Gene Therapy (R.W.K., J.R.M., F.M.), The Research Institute at Nationwide Children’s Hospital; College of Nursing (R.W.K.), The Ohio State University; Division of Pediatric Cardiology (H.D.A.), The Ohio State University College of Medicine, Nationwide Children’s Hospital, Heart Center; Battelle Center for Mathematical Medicine (W.C.R.), The Research Institute at Nationwide Children’s Hospital; Biophysics Graduate Program (W.C.R.), The Ohio State University; Center for Molecular...

Abstract

Background— Becker muscular dystrophy (BMD) and X-linked dilated cardiomyopathy often result from deletion mutations in the dystrophin gene that may lead to expression of an altered dystrophin protein in cardiac muscle. Cardiac involvement is present in ≈70% of BMD and all X-linked dilated cardiomyopathy cases. To date, the timing of cardiomyopathy development remains unpredictable. We analyzed 78 BMD and X-linked dilated cardiomyopathy patients with common deletion mutations predicted to alter the dystrophin protein and correlated their mutations to cardiomyopathy age of onset. This approach was chosen to connect dystrophin structure with function in the heart. Methods and Results— Detailed cardiac information was collected for BMD and X-linked dilated cardiomyopathy patients with defined dystrophin gene deletion mutations. Patients were grouped based on the dystrophin protein domain affected by the deletion. Deletions affecting the amino-terminal domain are associated with early-onset dilated cardiomyopathy (DCM; mid-20s), whereas deletions removing part of the rod domain and hinge 3 have a later-onset DCM (mid-40s). Further, we modeled the effects of the most common mutations occurring in the rod domain on the overall structure of the dystrophin protein. By combining genetic and protein information, this analysis revealed a strong correlation between specific protein structural modifications and DCM age of onset. Conclusions— We identified specific regions of the dystrophin gene that when mutated predispose BMD patients to early-onset DCM. In addition, we propose that some mutations lead to early-onset DCM by specific alterations in protein folding. These findings have potential implications for early intervention in the cardiac care of BMD patients and for therapeutic approaches that target the heart in dystrophinopathies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics(clinical),Cardiology and Cardiovascular Medicine,Genetics

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3