Affiliation:
1. From the Division of Cardiovascular Medicine, Department of Medicine (R.E.H., D.L., J.C., A.M.) and the Department of Molecular and Cellular Pharmacology (J.R.P., M.S.P., J.D.P.), University of Miami Miller School of Medicine, Miami, Fla; and the Division of Cardiovascular Medicine (S.B.P., J.D.K., S.L.), Oregon Health & Science University, Portland, Ore.
Abstract
Background—
A key issue for cardiovascular genetic medicine is ascertaining if a putative mutation indeed causes dilated cardiomyopathy (DCM). This is critically important as genetic DCM, usually presenting with advanced, life-threatening disease, may be preventable with early intervention in relatives known to carry the mutation.
Methods and Results—
We recently undertook bidirectional resequencing of
TNNT2
, the cardiac troponin T gene, in 313 probands with DCM. We identified 6
TNNT2
protein-altering variants in 9 probands, all who had early onset, aggressive disease. Additional family members of mutation carriers were then studied when available. Four of the 9 probands had DCM without a family history, and 5 probands had familial DCM. Only 1 mutation (Lys210del) could be attributed as definitively causative from previous reports. Four of the 5 missense mutations were novel (Arg134Gly, Arg151Cys, Arg159Gln, and Arg205Trp), and one was previously reported with hypertrophic cardiomyopathy (Glu244Asp). Based on the clinical, pedigree, and molecular genetic data, these 5 mutations were considered possibly or likely disease causing. To further clarify their potential pathophysiologic impact, we undertook functional studies of these mutations in cardiac myocytes reconstituted with mutant troponin T proteins. We observed decreased Ca
2+
sensitivity of force development, a hallmark of DCM, in support of the conclusion that these mutations are disease causing.
Conclusions—
We conclude that the combination of clinical, pedigree, molecular genetic, and functional data strengthen the interpretation of
TNNT2
mutations in DCM.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Genetics(clinical),Cardiology and Cardiovascular Medicine,Genetics
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献