Proteomic Identification of Matrix Metalloproteinase Substrates in the Human Vasculature

Author:

Stegemann Christin1,Didangelos Athanasios1,Barallobre-Barreiro Javier1,Langley Sarah R.1,Mandal Kaushik1,Jahangiri Marjan1,Mayr Manuel1

Affiliation:

1. From the King’s British Heart Foundation Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); The James Black Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); Division of Cardiac Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD (K.M.); and Department of Cardiac Surgery, St. George’s Healthcare NHS Trust, London, United Kingdom (M.J.).

Abstract

Background— Matrix metalloproteinases (MMPs) play a key role in cardiovascular disease, in particular aneurysm formation and plaque rupture. Surprisingly, little is known about MMP substrates in the vasculature. Methods and Results— We used a proteomics approach to identify vascular substrates for 3 MMPs, 1 of each of the 3 major classes of MMPs: Human arteries were incubated with MMP-3 (a member of stromelysins), MMP-9 (considered a gelatinase), and MMP-14 (considered a member of the collagenases and of the membrane-bound MMPs). Candidate substrates were identified by mass spectrometry based on increased release from the arterial tissue on digestion, spectral evidence for proteolytic degradation after gel separation, and identification of nontryptic cleavage sites. Using this approach, novel candidates were identified, including extracellular matrix proteins associated with the basement membrane, elastic fibers (emilin-1), and other extracellular proteins (periostin, tenascin-X). Seventy-four nontryptic cleavage sites were detected, many of which were shared among different MMPs. The proteomics findings were validated by immunoblotting and by digesting recombinant/purified proteins with exogenous MMPs. As proof-of-principle, results were related to in vivo pathology by searching for corresponding degradation products in human aortic tissue with different levels of endogenous MMP-9. Conclusions— The application of proteomics to identify MMP targets is a new frontier in cardiovascular research. Our current classification of MMPs based on few substrates is an oversimplification of a complex area of biology. This study provides a more comprehensive assessment of potential MMP substrates in the vasculature and represents a valuable resource for future investigations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics (clinical),Cardiology and Cardiovascular Medicine,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3