Proteome-Based Systems Biology Analysis of the Diabetic Mouse Aorta Reveals Major Changes in Fatty Acid Biosynthesis as Potential Hallmark in Diabetes Mellitus–Associated Vascular Disease

Author:

Husi Holger1,Van Agtmael Tom1,Mullen William1,Bahlmann Ferdinand H.1,Schanstra Joost P.1,Vlahou Antonia1,Delles Christian1,Perco Paul1,Mischak Harald1

Affiliation:

1. From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, Glasgow, UK (H.H., T.V.A., W.M., C.D., H.M.); Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (F.H.B.); Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Université Toulouse III Paul-Sabatier, Toulouse, France (J.P.S.); Biomedical Research Foundation, Academy of Athens, Athens, Greece (A.V....

Abstract

Background— Macrovascular complications of diabetes mellitus are a major risk factor for cardiovascular morbidity and mortality. Currently, studies only partially described the molecular pathophysiology of diabetes mellitus–associated effects on vasculature. However, better understanding of systemic effects is essential in unraveling key molecular events in the vascular tissue responsible for disease onset and progression. Methods and Results— Our overall aim was to get an all-encompassing view of diabetes mellitus–induced key molecular changes in the vasculature. An integrative proteomic and bioinformatics analysis of data from aortic vessels in the low-dose streptozotocin-induced diabetic mouse model (10 animals) was performed. We observed pronounced dysregulation of molecules involved in myogenesis, vascularization, hypertension, hypertrophy (associated with thickening of the aortic wall), and a substantial reduction of fatty acid storage. A novel finding is the pronounced downregulation of glycogen synthase kinase-3β (Gsk3β) and upregulation of molecules linked to the tricarboxylic acid cycle (eg, aspartate aminotransferase [Got2] and hydroxyacid-oxoacid transhydrogenase [Adhfe1]). In addition, pathways involving primary alcohols and amino acid breakdown are altered, potentially leading to ketone-body production. A number of these findings were validated immunohistochemically. Collectively, the data support the hypothesis that in this diabetic model, there is an overproduction of ketone-bodies within the vessels using an alternative tricarboxylic acid cycle-associated pathway, ultimately leading to the development of atherosclerosis. Conclusions— Streptozotocin-induced diabetes mellitus in animals leads to a reduction of fatty acid biosynthesis and an upregulation of an alternative ketone-body formation pathway. This working hypothesis could form the basis for the development of novel therapeutic intervention and disease management approaches.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics (clinical),Cardiology and Cardiovascular Medicine,Genetics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3