Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure

Author:

Gupte Anisha A.1,Hamilton Dale J.1,Cordero-Reyes Andrea M.1,Youker Keith A.1,Yin Zheng1,Estep Jerry D.1,Stevens Robert D.1,Wenner Brett1,Ilkayeva Olga1,Loebe Matthias1,Peterson Leif E.1,Lyon Christopher J.1,Wong Stephen T.C.1,Newgard Christopher B.1,Torre-Amione Guillermo1,Taegtmeyer Heinrich1,Hsueh Willa A.1

Affiliation:

1. From the Methodist Diabetes and Metabolism Institute, Houston Methodist Research Institute, Houston, TX (A.A.G., D.J.H., C.J.L., W.A.H.); Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston, TX (Z.Y., S.T.C.W.); Center for Biostatistics, Houston Methodist Research Institute, Houston, TX (L.E.P.); Department of Medicine, Houston Methodist Hospital, Houston, TX (D.J.H., W.A.H.), Department of Radiology, Houston Methodist Hospital, Houston, TX (S.T.C.W.);...

Abstract

Background— Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood. Methods and Results— We compared metabolomic, gene transcript, and protein data from 6 paired samples of failing human left ventricular tissue obtained during left ventricular assist device insertion (heart failure samples) and at heart transplant (post-left ventricular assist device samples). Nonfailing left ventricular wall samples procured from explanted hearts of patients with right heart failure served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in heart failure tissue: 2.6-fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α ( PGC1A , 1.3-fold) and estrogen-related receptor α ( ERRA , 1.2-fold) and γ ( ERRG , 2.2-fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with left ventricular assist device improved all of these metabolic and transcriptional defects. Conclusions— These observations underscore an important pathophysiologic role for severely defective metabolism in heart failure, while the reversibility of these defects by left ventricular assist device suggests metabolic resilience of the human heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics (clinical),Cardiology and Cardiovascular Medicine,Genetics

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3