Investigating the Genetic Causes of Sudden Unexpected Death in Children Through Targeted Next-Generation Sequencing Analysis

Author:

Dewar Laura J.1,Alcaide Miguel1,Fornika Daniel1,D’Amato Luisa1,Shafaatalab Sanam1,Stevens Charles M.1,Balachandra Thambirajah1,Phillips Susan M.1,Sanatani Shubhayan1,Morin Ryan D.1,Tibbits Glen F.1

Affiliation:

1. From the Departments of Biomedical Physiology and Kinesiology (L.J.D., S.S., C.M.S., G.F.T.) and Molecular Biology and Biochemistry (M.A., D.F., L.D., C.M.S., R.D.M., G.F.T.), Simon Fraser University, Burnaby, British Columbia, Canada; BC Children’s Hospital Research Institute, Vancouver, Canada (L.J.D., S.S., C.M.S., G.F.T.); Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada (T.B., S.M.P.); and Division of Pediatric Cardiology, Department of Pediatrics, British...

Abstract

Background— Inherited arrhythmia syndromes are responsible for a significant portion of autopsy-negative sudden unexpected death (SUD) cases, but molecular autopsy used to identify potentially causal variants is not routinely included in SUD investigations. We collaborated with a medical examiner's office to assist in finding a diagnosis for their autopsy-negative child SUD cases. Methods and Results— 191 child SUD cases (<5 years of age) were selected for analyses. Our next generation sequencing panel incorporated 38 inherited arrhythmia syndrome candidate genes and another 33 genes not previously investigated for variants that may underlie SUDY pathophysiology. Overall, we identified 11 potentially causal disease-associated variants in 12 cases, for an overall yield of 6.3%. We also identified 31 variants of uncertain significance in 36 cases and 16 novel variants predicted to be pathogenic in silico in 15 cases. The disease-associated variants were reported to the medical examiner to notify surviving relatives and recommend clinical assessment. Conclusions— We have identified variants that may assist in the diagnosis of at least 6.3% of autopsy-negative child SUD cases and reduce risk of future SUD in surviving relatives. We recommend a cautious approach to variant interpretation. We also suggest inclusion of cardiomyopathy genes as well as other candidate SUD genes in molecular autopsy analyses.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics(clinical),Cardiology and Cardiovascular Medicine,Genetics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forensic Science: Revealing the Clues;Unlocking the Mysteries of Death - New Perspectives for Post-mortem Examination;2024-01-26

2. Genetic Counseling and Testing in Children with Heart Diseases;Pediatric Cardiology;2024

3. Arrhythmogenic Cardiomyopathy;Disorders of the Heart and Blood Vessels;2023-11-15

4. An ABCC9 Missense Variant Is Associated with Sudden Cardiac Death and Dilated Cardiomyopathy in Juvenile Dogs;Genes;2023-04-27

5. Molecular autopsy: Twenty years of post-mortem diagnosis in sudden cardiac death;Frontiers in Medicine;2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3