Synthesis of an Endogenous Steroidal Na Pump Inhibitor Marinobufagenin, Implicated in Human Cardiovascular Diseases, Is Initiated by CYP27A1 via Bile Acid Pathway

Author:

Fedorova Olga V.1,Zernetkina Valentina I.1,Shilova Victoria Y.1,Grigorova Yulia N.1,Juhasz Ondrej1,Wei Wen1,Marshall Courtney A.1,Lakatta Edward G.1,Bagrov Alexei Y.1

Affiliation:

1. From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD.

Abstract

Background— The bioactive steroid, marinobufagenin, is an endogenous Na/K-ATPase bufadienolide inhibitor that is synthesized by adrenocortical and placental cells. Marinobufagenin binding to Na/K-ATPase initiates profibrotic cell signaling, and heightened marinobufagenin levels are implicated in the pathogenesis of hypertension, preeclampsia, and chronic kidney disease. Steroids are derived from cholesterol through the traditional steroidogenesis pathway initiated by enzyme CYP11A1, and via the acidic bile acid pathway, which is controlled by enzyme CYP27A1. The mechanism of marinobufagenin biosynthesis in mammals, however, remains unknown. Methods and Results— Here, we show that post-transcriptional silencing of the CYP27A1 gene in human trophoblast and rat adrenocortical cells reduced the expression of CYP27A1 mRNA by 70%, reduced total bile acids 2-fold, and marinobufagenin levels by 67% when compared with nontreated cells or cells transfected with nontargeting siRNA. In contrast, silencing of the CYP11A1 gene did not affect marinobufagenin production in either cell culture, but suppressed production of progesterone 2-fold in human trophoblast cells and of corticosterone by 90% in rat adrenocortical cells when compared with cells transfected with nontargeting siRNA. In vivo, in a high-salt administration experiment, male and female Dahl salt-sensitive rats became hypertensive after 4 weeks on a high-NaCl diet, their plasma marinobufagenin levels doubled, and adrenocortical CYP27A1 mRNA and protein increased 1.6-fold and 2.0-fold. Conclusions— Therefore, the endogenous steroidal Na/K-ATPase inhibitor, marinobufagenin, is synthesized in mammalian placenta and adrenal cortex from cholesterol through the novel acidic bile acid pathway. These findings will help to understand the role of marinobufagenin in highly prevalent human cardiovascular diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics(clinical),Cardiology and Cardiovascular Medicine,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3