Insulin therapy induces antiatherogenic changes of serum lipoproteins in noninsulin-dependent diabetes.

Author:

Taskinen M R1,Kuusi T1,Helve E1,Nikkilä E A1,Yki-Järvinen H1

Affiliation:

1. Second Department of Medicine, University of Helsinki, Finland.

Abstract

To study the effects of rigorous insulin therapy on serum lipoproteins in patients with noninsulin-dependent diabetes not controlled with oral agents only, we measured serum lipoproteins, apoproteins, lipolytic enzymes, and glucose disposal using an insulin clamp technique before and after 4 weeks of insulin therapy. Lipoproteins were isolated by ultracentrifugation and high density lipoprotein (HDL) subfractions, by rate-zonal density gradient ultracentrifugation. The group included 11 women and eight men (age 58 +/- 1 years and RBW 125 +/- 4%). Body weight, glycosylated hemoglobin, mean diurnal glucose, plasma free insulin, and glucose uptake (M-value) were 75 vs. 76 kg; 11.9 vs. 8.9%; 234 vs. 124 mg/dl; 12 vs. 27 microU/ml; and 5.0 +/- 0.4 vs. 7.1 +/- 0.6 mg/kg/min before and after insulin therapy, respectively. After insulin therapy there was a decrease of very low density lipoprotein (VLDL) triglyceride (-60%, p less than 0.001) but an increase of HDL2 cholesterol (+21%, p less than 0.001); HDL2 phospholipids (+38%, p less than 0.001); HDL2 proteins (+23%, p less than 0.01); and HDL2 mass (127 +/- 11 vs. 158 +/- 12 mg/dl, p less than 0.001). There was a decrease of HDL3 cholesterol (-13%, p less than 0.05); HDL3 phospholipids (-16%, p less than 0.05); HDL3 proteins (-18%, p less than 0.001); and HDL3 mass (179 +/- 6 vs. 146 +/- 6, p less than 0.01). Zonal profiles showed a redistribution of particles from HDL3 to HDL2. Serum apo A-I increased (p less than 0.05), apo A-II remained constant, but apo B decreased (-29%, p less than 0.001). The most marked change during insulin therapy was a 2.3-fold increase in adipose tissue lipoprotein lipase (LPL) activity (p less than 0.001). The changes of VLDL and HDL subfractions were not explained by respective changes of the blood glucose, free insulin, or M-value. The data indicate that intensive insulin therapy induces antiatherogenic changes in serum lipids and lipoproteins and suggest that the induction of LPL by insulin is the major factor responsible for redistribution of HDL particles from HDL3 to HDL2.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference46 articles.

1. Plasma lipid and lipoprotein abnormalities In diabetes. In: Jarrett RS, ed. Diabetes and heart disease;Mdlfi EA;Amsterdam: Elsevier/North Holland,1984

2. Howard BV. Lipoprotein metabolism in diabetes mellitus. J LJpid Res 198728:613-628

3. Plasma lipoproteins in human diabetes mellitus. In: Albert! KGMM, Krall LP, eds. The diabetes annual/1;Bruruell JD;Amsterdam: Elsevier/North Holland,1985

4. Diabetes and atherosclerosis: an epktemtologic view;PyOrft U K;Diabetes/Metab Rev,1987

5. Effect of Insulin Therapy on Insulin Resistance in Type II Diabetic Subjects: Evidence for Heterogeneity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3