Enhanced Nitric Oxide Inactivation and Protein Nitration by Reactive Oxygen Species in Renal Insufficiency

Author:

Vaziri Nosratola D.1,Ni Zhenmin1,Oveisi Fariba1,Liang Kaihui1,Pandian Raj1

Affiliation:

1. From the Division of Nephrology and Hypertension, Departments of Medicine (N.D.V., Z.N., F.O., K.L., R.P.), Physiology and Biophysics (N.D.V.), University of California, Irvine, Calif.

Abstract

Chronic renal failure (CRF) is associated with oxidative stress which promotes production of reactive carbonyl compounds and lipoperoxides leading to the accumulation of advanced glycation and lipoxidation end products. Reactive oxygen species (ROS) avidly reacts with nitric oxide (NO) producing cytotoxic reactive nitrogen species capable of nitrating proteins and damaging other molecules. This study tested the hypothesis that CRF results in enhanced ROS-mediated NO inactivation and protein nitration which can be ameliorated with antioxidant therapy. Male Sprague Dawley rats were randomized to CRF (5/6 nephrectomy) and sham-operated controls and fed either a regular diet (vitamin E, 40 U/Kg food) or an antioxidant-fortified diet (vitamin E, 5000 U/Kg food) for 6 weeks. Blood pressure, plasma malondialdehyde (MDA), tissue NO synthase (NOS) isoforms, tissue nitrotyrosine (the footprint of NO interaction with ROS), and vascular tissue NO production were determined. CRF resulted in marked elevations of blood pressure, plasma MDA, and tissue nitrotyrosine abundance, but did not change plasma L-arginine level. This was coupled with depressed vascular tissue NO production and reduced immunodetectable NOS proteins in the vascular, renal, and cardiac tissues. Antioxidant therapy ameliorated the CRF-induced hypertension, improved vascular tissue NO production, lowered tissue nitrotyrosine burden, and reversed downregulations of NOS isoforms. In contrast, antioxidant therapy had no effects in the controls. CRF is associated with oxidative stress which promotes NO inactivation by ROS leading to functional NO deficiency, hypertension, and widespread accumulation of protein nitration products. Amelioration of oxidative stress by high-dose vitamin E enhances NO availability, improves hypertension, lowers protein nitration products, and increases NOS expression and vascular NO production in CRF animals.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3