Real‐Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks

Author:

Bollepalli Sandeep Chandra1ORCID,Sevakula Rahul K.1ORCID,Au‐Yeung Wan‐Tai M.1,Kassab Mohamad B.1,Merchant Faisal M.2ORCID,Bazoukis George3,Boyer Richard4,Isselbacher Eric M.5,Armoundas Antonis A.16ORCID

Affiliation:

1. Cardiovascular Research Center Massachusetts General Hospital Boston MA

2. Cardiology Division Emory University School of Medicine Atlanta GA

3. Second Department of Cardiology Evangelismos General Hospital of Athens Athens Greece

4. Anesthesia Department Massachusetts General Hospital Boston MA

5. Healthcare Transformation Lab Massachusetts General Hospital Boston MA

6. Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA

Abstract

Background Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in providing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we develop an algorithm to improve life threatening arrhythmia detection in the ICUs using a deep learning approach. Methods and Results This study involves a total of 953 independent life‐threatening arrhythmia alarms generated from the ICU bedside monitors of 410 patients. Specifically, we used the ECG (4 channels), arterial blood pressure, and photoplethysmograph signals to accurately detect the onset and offset of various arrhythmias, without prior knowledge of the alarm type. We used a hybrid convolutional neural network based classifier that fuses traditional handcrafted features with features automatically learned using convolutional neural networks. Further, the proposed architecture remains flexible to be adapted to various arrhythmic conditions as well as multiple physiological signals. Our hybrid‐ convolutional neural network approach achieved superior performance compared with methods which only used convolutional neural network. We evaluated our algorithm using 5‐fold cross‐validation for 5 times and obtained an accuracy of 87.5%±0.5%, and a score of 81%±0.9%. Independent evaluation of our algorithm on the publicly available PhysioNet 2015 Challenge database resulted in overall classification accuracy and score of 93.9% and 84.3%, respectively, indicating its efficacy and generalizability. Conclusions Our method accurately detects multiple arrhythmic conditions. Suitable translation of our algorithm may significantly improve the quality of care in ICUs by reducing the burden of false alarms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3