Somatic Mosaicism of a PDGFRB Activating Variant in Aneurysms of the Intracranial, Coronary, Aortic, and Radial Artery Vascular Beds

Author:

Parada Carolina A.1,El‐Ghazali Fatima M.1,Toglia Daphne1,Ruzevick Jacob1,McAvoy Malia1,Emerson Samuel1,Karasozen Yigit1,Busald Tina1,Nazem Ahmad A.1ORCID,Suranowitz Shaun M.1,Shalhub Sherene2ORCID,Marshall Desiree A.3ORCID,Gonzalez‐Cuyar Luis F.3ORCID,Dorschner Michael O.4,Ferreira Manuel1ORCID

Affiliation:

1. Departments of Neurosurgery University of Washington School of MedicineUniversity of Washington Medical Center Seattle WA

2. Division of Vascular Surgery University of Washington School of MedicineUniversity of Washington Medical Center Seattle WA

3. Division of Neuropathology Department of Laboratory Medicine and Pathology University of Washington School of MedicineHarborview Medical Center Seattle WA

4. Departments of Genome Sciences University of Washington School of MedicineUniversity of Washington Medical Center Seattle WA

Abstract

Background Activating variants in platelet‐derived growth factor receptor beta (PDGFRB), including a variant we have previously described (p.Tyr562Cys [g.149505130T>C [GRCh37/hg19]; c.1685A>G]), are associated with development of multiorgan pathology, including aneurysm formation. To investigate the association between the allele fraction genotype and histopathologic phenotype, we performed an expanded evaluation of post‐mortem normal and aneurysmal tissue specimens from the previously published index patient. Methods and Results Following death due to diffuse subarachnoid hemorrhage in a patient with mosaic expression of the above PDGFRB variant, specimens from the intracranial, coronary, radial and aortic arteries were harvested. DNA was extracted and alternate allele fractions (AAF) of PDGFRB were determined using digital droplet PCR. Radiographic and histopathologic findings, together with genotype expression of PDGFRB were then correlated in aneurysmal tissue and compared to non‐aneurysmal tissue. The PDGFRB variant was identified in the vertebral artery, basilar artery, and P1 segment aneurysms (AAF: 28.7%, 16.4%, and 17.8%, respectively). It was also identified in the coronary and radial artery aneurysms (AAF: 22.3% and 20.6%, respectively). In phenotypically normal intracranial and coronary artery tissues, the PDGFRB variant was not present. The PDGFRB variant was absent from lymphocyte DNA and normal tissue, confirming it to be a non‐germline somatic variant. Primary cell cultures from a radial artery aneurysm localized the PDGFRB variant to CD31‐, non‐endothelial cells. Conclusions Constitutive expression of PDGFRB within the arterial wall is associated with the development of human fusiform aneurysms. The role of targeted therapy with tyrosine kinase inhibitors in fusiform aneurysms with PDGFRB mutations should be further studied.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3