Affiliation:
1. Department of Psychological and Brain Sciences University of Iowa Iowa City IA
2. Department of Internal Medicine University of Iowa Iowa City IA
3. François M. Abboud Cardiovascular Research Center University of Iowa Iowa City IA
4. Department of Neuroscience and Pharmacology University of Iowa Iowa City IA
5. Department of Health and Human Physiology University of Iowa Iowa City IA
Abstract
Background
A recent study conducted in male offspring demonstrated that maternal gestational hypertension (MHT) induces hypertensive response sensitization (HTRS) elicited by postweaning high‐fat diet (HFD). In this study, we investigated the sensitizing effect of MHT on postweaning HFD‐induced hypertensive response in female rat offspring and assessed the protective role of estrogen in HTRS.
Methods and Results
The results showed that MHT also induced a sensitized HFD‐elicited hypertensive response in intact female offspring. However, compared with male offspring, this MHT‐induced HTRS was sex specific in that intact female offspring exhibited an attenuated increase in blood pressure. Ovariectomy significantly enhanced the HFD‐induced increase in blood pressure and the pressor response to centrally administered angiotensin II or tumor necrosis factor‐α in offspring of normotensive dams, which was accompanied by elevated centrally driven sympathetic activity, upregulated mRNA expression of prohypertensive components, and downregulated expression of antihypertensive components in the hypothalamic paraventricular nucleus. However, when compared with HFD‐fed ovariectomized offspring of normotensive dams, the MHT‐induced HTRS and pressor responses to centrally administered angiotensin II or tumor necrosis factor‐α in HFD‐fed intact offspring of MHT dams were not potentiated by ovariectomy, but the blood pressure and elicited pressor responses as well as central sympathetic tone remained higher.
Conclusions
The results indicate that in adult female offspring MHT induced HTRS elicited by HFD. Estrogen normally plays a protective role in antagonizing HFD prohypertensive effects, and MHT compromises this normal protective action of estrogen by augmenting brain reactivity and centrally driven sympathetic activity.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献