Disruption of Sarcoplasmic Reticulum‐Mitochondrial Contacts Underlies Contractile Dysfunction in Experimental and Human Atrial Fibrillation: A Key Role of Mitofusin 2

Author:

Li Jin123ORCID,Qi Xi4,Ramos Kennedy S.12ORCID,Lanters Eva5,Keijer Jaap4ORCID,de Groot Natasja5ORCID,Brundel Bianca12ORCID,Zhang Deli14ORCID

Affiliation:

1. Department of Physiology Amsterdam UMC location Vrije Universiteit Amsterdam Amsterdam The Netherlands

2. Amsterdam Cardiovascular Sciences Heart Failure and Arrhythmias Amsterdam The Netherlands

3. Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine University of Michigan Medical School Ann Arbor MI

4. Human and Animal Physiology Wageningen University Wageningen The Netherlands

5. Department of Cardiology Erasmus Medical Center Rotterdam The Netherlands

Abstract

Background Atrial fibrillation (AF) is the most common and progressive tachyarrhythmia. Diabetes is a common risk factor for AF. Recent research findings revealed that microtubule network disruption underlies AF. The microtubule network mediates the contact between sarcoplasmic reticulum and mitochondria, 2 essential organelles for normal cardiomyocyte function. Therefore, disruption of the microtubule network may impair sarcoplasmic reticulum and mitochondrial contacts (SRMCs) and subsequently cardiomyocyte function. The current study aims to determine whether microtubule‐mediated SRMCs disruption underlies diabetes‐associated AF. Methods and Results Tachypacing (mimicking AF) and high glucose (mimicking diabetes) significantly impaired contractile function in HL‐1 cardiomyocytes (loss of calcium transient) and Drosophila (reduced heart rate and increased arrhythmia), both of which were prevented by microtubule stabilizers. Furthermore, both tachypacing and high glucose significantly reduced SRMCs and the key SRMC tether protein mitofusin 2 (MFN2) and resulted in consequent mitochondrial dysfunction, all of which were prevented by microtubule stabilizers. In line with pharmacological interventions with microtubule stabilizers, cardiac‐specific knockdown of MFN2 induced arrhythmia in Drosophila and overexpression of MFN2 prevented tachypacing‐ and high glucose–induced contractile dysfunction in HL‐1 cardiomyocytes and/or Drosophila . Consistently, SRMCs/MFN2 levels were significantly reduced in right atrial appendages of patients with persistent AF compared with control patients, which was aggravated in patients with diabetes. Conclusions SRMCs may play a critical role in clinical AF, especially diabetes‐related AF. Furthermore, SRMCs can be regulated by microtubules and MFN2, which represent novel potential therapeutic targets for AF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3