Cardiac Comorbidity Risk Score: Zero‐Burden Machine Learning to Improve Prediction of Postoperative Major Adverse Cardiac Events in Hip and Knee Arthroplasty

Author:

Onishchenko Dmytro1ORCID,Rubin Daniel S.2ORCID,van Horne James R.3,Ward R. Parker14ORCID,Chattopadhyay Ishanu1567ORCID

Affiliation:

1. Department of Medicine University of Chicago IL

2. Department of Anesthesia and Critical Care University of Chicago IL

3. Southern Oregon Orthopedics Medford OR

4. Section of Cardiology University of Chicago IL

5. Committee on Genetics, Genomics & Systems Biology University of Chicago IL

6. Committee on Quantitative Methods in Social, Behavioral, and Health Sciences University of Chicago IL

7. Section of Hospital Medicine University of Chicago IL

Abstract

Background In this retrospective, observational study we introduce the Cardiac Comorbidity Risk Score, predicting perioperative major adverse cardiac events (MACE) after elective hip and knee arthroplasty. MACE is a rare but important driver of mortality, and existing tools, eg, the Revised Cardiac Risk Index demonstrate only modest accuracy. We demonstrate an artificial intelligence‐based approach to identify patients at high risk of MACE within 4 weeks (primary outcome) of arthroplasty, that imposes zero additional burden of cost/resources. Methods and Results Cardiac Comorbidity Risk Score calculation uses novel machine learning to estimate MACE risk from patient electronic health records, without requiring blood work or access to any demographic data beyond that of sex and age, and accounts for variable/missing/incomplete information across patient records. Validated on a deidentified cohort (age >45 years, n=445 391), performance was evaluated using the area under the receiver operator characteristics curve (AUROC), sensitivity/specificity, positive predictive value, and positive/negative likelihood ratios. In our cohort (age 63.5±10.5 years, 58.2% women, 34.2%/65.8% hip/knee procedures), 0.19% (882) experienced the primary outcome. Cardiac Comorbidity Risk Score achieved area under the receiver operator characteristics curve=80.0±0.4% (95% CI) for women and 80.1±0.5% (95% CI) for males, with 36.4% and 35.1% sensitivities, respectively, at 95% specificity, significantly outperforming Revised Cardiac Risk Index across all studied age‐, sex‐, risk‐, and comorbidity‐based subgroups. Conclusions Cardiac Comorbidity Risk Score, a novel artificial intelligence‐based screening tool using known and unknown comorbidity patterns, outperforms state‐of‐the‐art in predicting MACE within 4 weeks postarthroplasty, and can identify patients at high risk that do not demonstrate traditional risk factors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3