Natural Language Processing Enhances Prediction of Functional Outcome After Acute Ischemic Stroke

Author:

Sung Sheng‐Feng123ORCID,Chen Chih‐Hao4ORCID,Pan Ru‐Chiou1,Hu Ya‐Han5ORCID,Jeng Jiann‐Shing4

Affiliation:

1. Division of Neurology Department of Internal Medicine Ditmanson Medical Foundation, Chia‐Yi Christian Hospital Chiayi City Taiwan

2. Department of Information Management and Institute of Healthcare Information Management National Chung Cheng University Chiayi County Taiwan

3. Department of Nursing Min‐Hwei Junior College of Health Care Management Tainan Taiwan

4. Stroke Center and Department of Neurology National Taiwan University Hospital Taipei Taiwan

5. Department of Information Management National Central University Taoyuan City Taiwan

Abstract

Background Conventional prognostic scores usually require predefined clinical variables to predict outcome. The advancement of natural language processing has made it feasible to derive meaning from unstructured data. We aimed to test whether using unstructured text in electronic health records can improve the prediction of functional outcome after acute ischemic stroke. Methods and Results Patients hospitalized for acute ischemic stroke were identified from 2 hospital stroke registries (3847 and 2668 patients, respectively). Prediction models developed using the first cohort were externally validated using the second cohort, and vice versa. Free text in the history of present illness and computed tomography reports was used to build machine learning models using natural language processing to predict poor functional outcome at 90 days poststroke. Four conventional prognostic models were used as baseline models. The area under the receiver operating characteristic curves of the model using history of present illness in the internal and external validation sets were 0.820 and 0.792, respectively, which were comparable to the National Institutes of Health Stroke Scale score (0.811 and 0.807). The model using computed tomography reports achieved area under the receiver operating characteristic curves of 0.758 and 0.658. Adding information from clinical text significantly improved the predictive performance of each baseline model in terms of area under the receiver operating characteristic curves, net reclassification improvement, and integrated discrimination improvement indices (all P <0.001). Swapping the study cohorts led to similar results. Conclusions By using natural language processing, unstructured text in electronic health records can provide an alternative tool for stroke prognostication, and even enhance the performance of existing prognostic scores.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3