Wnt Site Signaling Inhibitor Secreted Frizzled‐Related Protein 3 Protects Mitral Valve Endothelium From Myocardial Infarction–Induced Endothelial‐to‐Mesenchymal Transition

Author:

Alvandi Zahra12ORCID,Nagata Yasufumi3ORCID,Passos Livia Silva Araúujo4,Hashemi Gheinani Ali256ORCID,Guerrero J. Luis3,Wylie‐Sears Jill1,Romero Dayana Carolina3,Morris Brittan A.3,Sullivan Suzanne M.3,Yaghoubian Koushiar M.3,Alvandi Amirhossein7,Adam Rosalyn M.26,Aikawa Elena48ORCID,Levine Robert A.3,Bischoff Joyce12ORCID

Affiliation:

1. Vascular Biology Program Boston Children’s Hospital Boston MA

2. Department of Surgery Harvard Medical School Boston MA

3. Cardiac Ultrasound Laboratory Massachusetts General HospitalHarvard Medical School Boston MA

4. Center for Excellence in Vascular Biology Brigham and Women’s Hospital Harvard Medical School Boston MA

5. Broad Institute of MIT and Harvard Cambridge MA

6. Department of Urology Boston Children’s Hospital Boston MA

7. Department of Mathematics and Statistics University of Massachusetts Amherst MA

8. Center for Interdisciplinary Cardiovascular Sciences Cardiovascular MedicineBrigham and Women’s HospitalHarvard Medical School Boston MA

Abstract

Background The onset and mechanisms of endothelial‐to‐mesenchymal transition (EndMT) in mitral valve (MV) leaflets following myocardial infarction (MI) are unknown, yet these events are closely linked to stiffening of leaflets and development of ischemic mitral regurgitation. We investigated whether circulating molecules present in plasma within days after MI incite EndMT in MV leaflets. Methods and Results We examined the onset of EndMT in MV leaflets from 9 sheep with inferior MI, 8 with sham surgery, and 6 naïve controls. Ovine MVs 8 to 10 days after inferior MI displayed EndMT, shown by increased vascular endothelial cadherin/α‐smooth muscle actin–positive cells. The effect of plasma on EndMT in MV endothelial cells (VECs) was assessed by quantitative polymerase chain reaction, migration assays, and immunofluorescence. In vitro, post‐MI plasma induced EndMT marker expression and enhanced migration of mitral VECs; sham plasma did not. Analysis of sham versus post‐MI plasma revealed a significant drop in the Wnt signaling antagonist sFRP3 (secreted frizzled‐related protein 3) in post‐MI plasma. Addition of recombinant sFRP3 to post‐MI plasma reversed its EndMT‐inducing effect on mitral VECs. RNA‐sequencing analysis of mitral VECs exposed to post‐MI plasma showed upregulated FOXM1 (forkhead box M1). Blocking FOXM1 reduced EndMT transcripts in mitral VECs treated with post‐MI plasma. Finally, FOXM1 induced by post‐MI plasma was downregulated by sFRP3. Conclusions Reduced sFRP3 in post‐MI plasma facilitates EndMT in mitral VECs by increasing the transcription factor FOXM1. Restoring sFRP3 levels or inhibiting FOXM1 soon after MI may provide a novel strategy to modulate EndMT in the MV to prevent ischemic mitral regurgitation and heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3