Affiliation:
1. Department of Cardiology and the Center for Complex Cardiac Arrhythmias of Minhang District Shanghai Fifth People’s HospitalFudan University Shanghai China
2. Department of Cardiology Shanghai Chest HospitalShanghai Jiao Tong University Shanghai China
3. Department of Cardiology Shanghai Jing’an District Central HospitalFudan University Shanghai China
4. Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
5. Institute of Medical GeneticsTongji University Shanghai China
6. Cardiovascular Research Laboratory and Central Laboratory Shanghai Fifth People’s HospitalFudan University Shanghai China
Abstract
Background
Atrial fibrillation (AF) is the most common form of clinical cardiac dysrhythmia responsible for thromboembolic cerebral stroke, congestive heart failure, and death. Aggregating evidence highlights the strong genetic basis of AF. Nevertheless, AF is of pronounced genetic heterogeneity, and in an overwhelming majority of patients, the genetic determinants underpinning AF remain elusive.
Methods and Results
By genome‐wide screening with polymorphic microsatellite markers and linkage analysis in a 4‐generation Chinese family affected with autosomal‐dominant AF, a novel locus for AF was mapped to chromosome 1q24.2–q25.1, a 3.20‐cM (≈4.19 Mbp) interval between markers D1S2851 and D1S218, with the greatest 2‐point logarithm of odds score of 4.8165 for the marker D1S452 at recombination fraction=0.00. Whole‐exome sequencing and bioinformatics analyses showed that within the mapping region, only the mutation in the paired related homeobox 1 (
PRRX1
) gene, NM_022716.4:c.319C>T;(p.Gln107*), cosegregated with AF in the family. In addition, sequencing analyses of
PRRX1
in another cohort of 225 unrelated patients with AF revealed a new mutation, NM_022716.4:c.437G>T; (p.Arg146Ile), in a patient. The 2 mutations were absent in 908 control subjects. Biological analyses in HeLa cells demonstrated that the 2 mutants had significantly diminished transactivation on the target genes
ISL1
and
SHOX2
and markedly decreased ability to bind the promoters of
ISL1
and
SHOX2
(2 genes causally linked to AF), although with normal intracellular distribution.
Conclusions
This study first indicates that PRRX1 loss‐of‐function mutations predispose to AF, which provides novel insight into the molecular pathogenesis underpinning AF, implying potential implications for precisive prophylaxis and management of AF.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献