Bilirubin Nanoparticles Protect Against Cardiac Ischemia/Reperfusion Injury in Mice

Author:

Ai Wen12,Bae Soochan1,Ke Qingen1,Su Shi1,Li Ruijian1,Chen Yanwei12,Yoo Dohyun3,Lee Eesac1ORCID,Jon Sangyong3,Kang Peter M.1ORCID

Affiliation:

1. Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA

2. Department of Cardiology Huazhong University of Science and Technology Union Shenzhen Hospital Shenzhen China

3. Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea

Abstract

Background Ischemia/reperfusion (I/R) injury causes overproduction of reactive oxygen species, which are the major culprits of oxidative stress that leads to inflammation, apoptosis, myocardial damage, and dysfunction. Bilirubin acts as a potent endogenous antioxidant that is capable of scavenging various reactive oxygen species. We have previously generated bilirubin nanoparticles (BRNPs) consisting of polyethylene glycol–conjugated bilirubin. In this study, we examined the therapeutic effects of BRNPs on myocardial I/R injury in mice. Methods and Results In vivo imaging using fluorophore encapsulated BRNPs showed BRNPs preferentially targeted to the site of I/R injury in the heart. Cardiac I/R surgery was performed by first ligating the left anterior descending coronary artery. After 45 minutes, reperfusion was achieved by releasing the ligation. BRNPs were administered intraperitoneally at 5 minutes before and 24 hours after reperfusion. Mice that received BRNPs showed significant improvements in their cardiac output, assessed by echocardiogram and pressure volume loop measurements, compared with the ones that received vehicle treatment. BRNPs treatment also significantly reduced the myocardial infarct size in mice that underwent cardiac I/R, compared with the vehicle‐treatment group. In addition, BRNPs effectively suppressed reactive oxygen species and proinflammatory factor levels, as well as the amount of cardiac apoptosis. Conclusions Taken together, BRNPs could exert their therapeutic effects on cardiac I/R injury through attenuation of oxidative stress, apoptosis, and inflammation, providing a novel therapeutic modality for myocardial I/R injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3