Inhibition of Aryl Hydrocarbon Receptor Attenuates Hyperglycemia‐Induced Hematoma Expansion in an Intracerebral Hemorrhage Mouse Model

Author:

Ren Reng123ORCID,Lu Qin3ORCID,Sherchan Prativa3,Fang Yuanjian13ORCID,Lenahan Cameron3ORCID,Tang Lihui3ORCID,Huang Yi13ORCID,Liu Rui3,Zhang John H.345ORCID,Zhang Jianmin1,Tang Jiping3ORCID

Affiliation:

1. Department of Neurosurgery The Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang China

2. Department of Neurointensive Care Unit The Second Affiliated HospitalZhejiang University School of Medicine Hangzhou Zhejiang China

3. Department of Physiology and Pharmacology Loma Linda University School of Medicine Loma Linda CA

4. Department of Neurosurgery Loma Linda University School of Medicine Loma Linda CA

5. Department of Anesthesiology Loma Linda University School of Medicine Loma Linda CA

Abstract

Background Hyperglycemia is associated with greater hematoma expansion (HE) and worse clinical prognosis after intracerebral hemorrhage (ICH). However, the clinical benefits of intensive glucose normalization remain controversial, and there are no approved therapies for reducing HE. The aryl hydrocarbon receptor (AHR) has been shown to participate in hyperglycemia‐induced blood–brain barrier (BBB) dysfunction and brain injury after stroke. Herein, we investigated the role of AHR in hyperglycemia‐induced HE in a male mouse model of ICH. Methods and Results CD1 mice (n=387) were used in this study. Mice were subjected to ICH by collagenase injection. Fifty percent dextrose was injected intraperitoneally 3 hours after ICH. AHR knockout clustered regularly interspaced short palindromic repeat was administered intracerebroventricularly to evaluate the role of AHR after ICH. A selective AHR inhibitor, 6,2′,4′‐trimethoxyflavone, was administered intraperitoneally 2 hours or 6 hours after ICH for outcome study. To evaluate the effect of AHR on HE, 3‐methylcholanthrene, an AHR agonist, was injected intraperitoneally 2 hours after ICH. The results showed hyperglycemic ICH upregulated AHR accompanied by greater HE. AHR inhibition provided neurological benefits by restricting HE and preserving BBB function after hyperglycemic ICH. In vivo knockdown of AHR further limited HE and enhanced the BBB integrity. Hyperglycemia directly activated AHR as a physiological stimulus in vivo. The thrombospondin‐1/transforming growth factor‐β/vascular endothelial growth factor axis partly participated in AHR signaling after ICH, which inhibited the expressions of BBB‐related proteins, ZO‐1 and Claudin‐5. Conclusions AHR may serve as a potential therapeutic target to attenuate hyperglycemia‐induced hematoma expansion and to preserve the BBB in patients with ICH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3