Dynamic monitoring of platelet deposition on severely damaged vessel wall in flowing blood. Effects of different stenoses on thrombus growth.

Author:

Lassila R1,Badimon J J1,Vallabhajosula S1,Badimon L1

Affiliation:

1. Division of Cardiology, Mount Sinai Medical Center, New York 10029.

Abstract

The formation of an arterial thrombus is a dynamic process that depends upon the characteristics of blood flow, the triggering substrate, and the blood components. We have developed and characterized a sensitive and specific computer-assisted nuclear scintigraphic method to study the dynamics of platelet deposition on severely damaged vessels both in vitro and in vivo in nonstenotic and stenotic flow conditions. Heparinized pig blood with Indium-111-labeled platelets was perfused for 50 minutes. Method variability in both static and flowing conditions was evaluated by Indium-111-labeled transferrin and Indium-111-labeled platelets. Positive scintigrams were obtained mainly in the presence of severe high grade stenoses on a thrombogenic substrate. Since the method is highly sensitive, computer-assisted axial dependence analysis was performed on the scintigraphic images to locate the thrombotic accumulation with respect to the area of the stenosis and to monitor the dynamic changes in platelet accumulation over time. Both in vitro and in vivo the highest level of platelet deposition occurred at the apex of the 80% stenosis, where embolization could be usually detected after 30 minutes of perfusion. This study is the first to assess the dynamics of thrombus growth in nonparallel flow streamlines such as are encountered in stenotic vessels. This method provides a new experimental tool with which to study factors affecting thrombus formation and stability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Possible mechanisms responsible for acute coronary events in COVID-19;Medical Hypotheses;2020-10

2. Animal Models of Thrombosis;Cardiovascular Thrombus;2018

3. A review of strategies for infarct size reduction during acute myocardial infarction;Cardiovascular Revascularization Medicine;2017-07

4. Modeling thrombus formation and growth;Biotechnology and Bioengineering;2017-06-26

5. Prediction of Thrombus Growth: Effect of Stenosis and Reynolds Number;Cardiovascular Engineering and Technology;2017-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3