Inhibition of hepatic ACAT decreases ApoB secretion in miniature pigs fed a cholesterol-free diet.

Author:

Huff M W1,Telford D E1,Barrett P H1,Billheimer J T1,Gillies P J1

Affiliation:

1. Department of Medicine, University of Western Ontario, London, Canada.

Abstract

To test the hypothesis that hepatic cholesteryl ester is involved in the regulation of apolipoprotein (apo) B secretion into plasma, apoB kinetic studies were performed in six control miniature pigs and in six pigs after a 21-day administration of the acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor DuP 128 (2.2 mg.kg-1.d-1 i.v.). Pigs were fed low-fat, cholesterol-free diets. Total plasma cholesterol, triglyceride, very-low-density lipoprotein (VLDL) triglyceride, and low-density lipoprotein (LDL) cholesterol decreased 18%, 29%, 40%, and 26% respectively (P < .03). 131I-VLDL and 125I-LDL were injected simultaneously into each animal, and apoB kinetics were analyzed by using multi-compartmental analysis (SAAM30). VLDL apoB pool size decreased significantly by 60% (0.32 versus 0.84 mg/kg), which was due to a 65% reduction in the VLDL apoB production or secretion rate (1.03 versus 2.94 mg.kg-1.h-1). The fractional catabolic rate was unchanged. LDL apoB pool size decreased nonsignificantly by 18% (5.61 versus 6.90 mg/kg) due entirely to a 24% decrease in production rate (0.26 versus 0.34 mg.kg-1.h-1). At necropsy, hepatic microsomal ACAT activity decreased by 68% (0.28 versus 0.88 nmol.min-1.mg-1; P < .0002). Although an increase in hepatic free cholesterol leading to a decreased LDL receptor expression might be expected, this did not occur. The concentration of hepatic cholesterol and the LDL apoB fractional catabolic rate were unaffected by DuP 128. In addition, the concentration of hepatic triglyceride and the activity of diacylglycerol acyltransferase were not altered by DuP 128, indicating a lack of effect of DuP 128 on hepatic triglyceride metabolism. We conclude that inhibition of hepatic cholesteryl ester synthesis in vivo decreases apoB secretion into plasma.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3