Intracellular Calcium Mobilization Suppresses the TNF-α–Stimulated Synthesis of PAI-1 in Human Endothelial Cells

Author:

Peiretti Franck1,Alessi Marie-Christine1,Henry Mireille1,Anfosso Francine1,Juhan-Vague Irène1,Nalbone Gilles1

Affiliation:

1. From INSERM CJF 93-12, Laboratoire d’Hématologie, Faculté de Médecine, Marseille, France.

Abstract

Abstract We investigated in human umbilical vein endothelial cells (HUVECs) the interaction between the signaling pathways triggered by calcium mobilization and those affected by human recombinant tumor necrosis factor-α (TNF) on the expression of type-1 plasminogen activator inhibitor (PAI-1). Calcium ionophore A23187 alone exerted a modest increase (50%) on PAI-1 synthesis. TNF alone increased PAI-1 accumulation in the culture medium in a time- and dose-dependent fashion, but this increase was abolished when A23187 was added simultaneously with TNF. The downregulating effect of A23187 was not the result of impaired protein secretion, proteolysis, cytotoxicity, or an apoptotic process. A23187 did not decrease the TNF-enhanced PAI-1 mRNA level but did provoke a significant shift in the distribution pattern of PAI-1 transcripts by increasing the 2.3-kb relative to the 3.2-kb form. Comparable inhibitory effects on PAI-1 protein synthesis were observed when A23187 was added 7 hours after the onset of TNF stimulation, strongly suggesting a posttranscriptional inhibitory action of calcium signaling on TNF-stimulated PAI-1 synthesis. However, treatment with actinomycin D showed that PAI-1 mRNA stability was not altered by the various treatments. Chelation of extracellular calcium by EGTA did not prevent the A23187-induced inhibition of TNF-stimulated PAI-1 protein synthesis, emphasizing the role of internal calcium stores in the inhibition of PAI-1 synthesis. Sucrose gradient fractionation of cell lysates revealed that regardless of which treatment was used, both PAI-1 mRNA transcripts exhibited similar sedimentation profiles in the actively translating polysomal pool, suggesting that the A23187-induced shift had no functional consequence on translation. However, in TNF-stimulated cells, A23187 induced a higher proportion of PAI-1 mRNAs that sedimented in fractions corresponding to less dense polysomes, a phenomenon that usually reflects a slower initiation rate during mRNA translation. A23187 also abolished the increase in PAI-1 synthesis induced by recombinant human interleukin 1β, and thapsigargin exerted effects comparable to those of A23187 on PAI-1 synthesis in TNF-stimulated cells. It is proposed that in HUVECs, the A23187-induced release of calcium from endoplasmic stores suppresses at the translational level the increase in PAI-1 synthesis triggered by proinflammatory cytokines.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3