Three novel mutations of antithrombin inducing high-molecular-mass compounds.

Author:

Emmerich J1,Vidaud D1,Alhenc-Gelas M1,Chadeuf G1,Gouault-Heilmann M1,Aillaud M F1,Aiach M1

Affiliation:

1. INSERM CJF 91-01, UFR des Sciences Pharmaceutiques et Biologiques (Université Paris V, France.

Abstract

We have identified three novel mutations of the antithrombin (AT) gene in patients with thrombotic complications: a Cys 128 --> Tyr mutations, a G --> A mutation in the intervening sequence 4 (IVS4) 14 nucleotide 5' to exon 5, and a 9 bp deletion in the 3' end of exon 6 resulting in a short aberrant sequence after Arg 425. The latter mutation was associated with an Arg 47 --> His mutation in two compound heterozygous brothers. These three mutations led to the expression in the circulation of small amounts of inactive molecules with a high molecular mass in immunoblot analysis. In reducing conditions, these variant molecules had a normal molecular mass, which led us to postulate that these mutations prevent the formation of one intramolecular disulfide bond and allow the formation of intermolecular disulfide bonds. Plasma from a heterozygous patients bearing the Cys 128 --> Tyr mutation and from a compound heterozygote bearing the Arg 47 --> His mutation and the 9 bp deletion in exon 6 were passed through a heparin-sepharose column. In both cases a population of high-molecular-weight AT molecules with no binding affinity and no AT activity was separated from a population of normal molecules in the first patient, together with a population of molecules with a reduced binding affinity for heparin due to the substitution of Arg 47, in the compound heterozygote. The common feature of these three mutations is that they lead to partial misfolding and to the formation of intermolecular disulfide bonds with other plasma components, inducing the pleiotropic phenotypes observed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3