Influence of high density lipoprotein on esterified cholesterol stores in macrophages and hepatoma cells.

Author:

Bernard D W1,Rodriguez A1,Rothblat G H1,Glick J M1

Affiliation:

1. Department of Physiology and Biochemistry, Medical College of Pennsylvania, Philadelphia 19129.

Abstract

The ability of high density lipoproteins (HDL) to induce the clearance of cholesteryl esters from cultured cells has been explored. Studies using the J774 mouse macrophage cell line showed that these cells are not stimulated to clear esterified cholesterol upon exposure to HDL. This was observed over a wide range of HDL concentrations (10 to 1000 micrograms/ml HDL protein), and the lack of stimulation was not influenced by a number of factors relating to the preparation of the HDL, such as HDL subfraction, varying extents of lecithin:cholesterol acyltransferase modification, or heparin-Sepharose chromatography to remove particles containing apo E. Neither the method of loading the cells with esterified cholesterol nor the physical state of the lipid droplets affected the inability of HDL to elicit esterified cholesterol clearance. In the presence of the acyl CoA:cholesterol acyltransferase inhibitor, Sandoz 58-035, where a high level of intracellular free cholesterol was generated, efflux of only a small fraction of the excess free cholesterol to HDL was observed. J774 cells were able to clear esterified cholesterol efficiently in the presence of cholesterol-free apolipoprotein HDL/phospholipid particles, indicating that the cells have the capacity to clear esterified cholesterol. Fu5AH hepatoma cells and P388.D1 mouse macrophage cells also failed to clear esterified cholesterol in response to HDL. In contrast, mouse peritoneal macrophages cleared esterified cholesterol efficiently to HDL, indicating that there are fundamental differences between mouse peritoneal macrophages and the other cells types studied in regard to cholesterol metabolism as influenced by HDL.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3