In Vitro Interactions of Oxidatively Modified LDL With Type I, II, III, IV, and V Collagen, Laminin, Fibronectin, and Poly- d -Lysine

Author:

Greilberger Joachim1,Schmut Otto1,Jürgens Günther1

Affiliation:

1. From the Institute for Medical Biochemistry (J.G., G.J.) and the Department for Ophthalmology (O.S.), Medical School, Karl-Franzens Universität Graz, Austria.

Abstract

Abstract The accumulation of LDL in the arterial intima is considered a key event in atherogenesis. We investigated the binding of oxidized LDL (ox-LDL) to microtiter plates coated with type I or II collagen, laminin, fibronectin, or poly- d -lysine. Oxidation of LDL, 125 I-LDL, or Eu 3+ -LDL was performed with CuCl 2 , varying the time of oxidation. Bound lipoprotein was assessed by counting radioactivity or fluorescence in the wells. Binding of highly ox-LDL in PBS followed the order: type I collagen>poly- d -lysine>type II collagen>laminin>fibronectin. Comparing various collagen types, the binding of ox-LDL followed the order: type I>type V and, type III>type IV>type II collagen. Binding of ox-LDL in PBS was dependent on an increase in negative charge of ox-LDL. Testing certain amino acids as competitors for binding of highly ox-LDL to type I collagen put lysine first, followed by arginine and histidine. On laminin, histidine competed most, followed by lysine and arginine. When studying the influence of Na + , K + , Ca 2+ , Mg 2+ (equivalent to their concentrations in the interstitial fluid), native LDL, moderately ox-LDL, and highly ox-LDL showed the same affinity to type I collagen. However, a fivefold dilution of the buffer increased the affinity of moderately and highly ox-LDL 3.9- and 10-fold compared with native LDL. Application of the F(ab′) 2 from a monoclonal antibody to ox-LDL revealed a strong competition of the binding of highly ox-LDL to type II collagen (60%), laminin (35%), type I collagen (20%), and poly- d -lysine (15%), whereas the binding to fibronectin was not affected.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3