Tissue factor-induced coagulation triggers platelet thrombus formation as efficiently as fibrillar collagen at arterial blood flow conditions.

Author:

Orvim U1,Roald H E1,Stephens R W1,Roos N1,Sakariassen K S1

Affiliation:

1. Nycomed Bioreg AS, Oslo, Norway.

Abstract

The relative importance of vessel wall tissue factor (TF) in initiating thrombogenesis is not well defined. In contrast, vessel wall collagens have been well documented as potent inducers of thrombus formation. We compared the potency of a human TF/phospholipid surface with that of a surface consisting of human type III collagen fibrils in triggering thrombus formation in native human blood at venous and arterial blood flow conditions. A commercial preparation, Thromborel S, was used as a source of human TF. Biochemical characterization of this preparation revealed small amounts of FVII, FIX, and FX proteins. Coagulant activity of these proteins was associated with the FVII protein only, although it was a very low activity. Studies with anti-TF antibodies in a one-stage clotting assay showed that the procoagulant activity of Thromborel was mainly a result of TF. The molar ratio of TF to phospholipid was 1:2 x 10(7). Thrombus formation in flowing nonanticoagulated human blood drawn directly from an antecubital vein was triggered by either Thromborel S or collagen fibrils coated on Thermanox coverslips in a parallel-plate perfusion chamber device. A 1:50 Thromborel S dilution gave maximal fibrin deposition (90% surface coverage) at a wall shear rate of 100 s-1. However, pretreatment of the TF surface with a monoclonal anti-TF antibody reduced this fibrin deposition by 93% (P < .001). Thus, TF was essential for the procoagulant activity of the Thromborel S surface in this flow system also. At higher wall shear rates (650 and 2600s-1), less fibrin was deposited, but the platelet thrombus formation on the fibrin mesh increased dramatically.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3