Effects of Iron- and Hemoglobin-Loaded Human Monocyte–Derived Macrophages on Oxidation and Uptake of LDL

Author:

Yuan Xi Ming1,Brunk Ulf T.1,Olsson Anders G.1

Affiliation:

1. From the Departments of Internal Medicine and Pathology II, Faculty of Health Sciences, Linköping University, Linköping, Sweden.

Abstract

Abstract It is generally accepted that transition metals are required for cellular LDL oxidation. LDL may also be oxidized by iron and reducing agents in cell-free systems. We hypothesized that lysosomal iron may be exocytosed from macrophages that have been iron loaded by phagocytosis and degradation of iron-rich structures, eg, erythrocytes, and that such released iron may promote LDL oxidation and uptake by macrophages. Human monocyte–derived macrophages (HMDMs) were isolated and cultured for 7 days and then exposed to FeCl 3 , Fe-ADP, or Fe-EDTA (100 μmol/L) or hemoglobin (25 or 50 μg/mL) for 24 hours. After rinsing, LDL (50 to 150 μg/mL) was added in fresh culture medium without serum. After another 24 hours the media concentrations of iron and thiobarbituric acid–reacting substances as well as the electrophoretic mobility of LDL were increased, while the cells showed only minimal signs of decreased viability. Lipofuscin, neutral lipids, and phospholipids accumulated in a granular, lysosome-like pattern, and the cells acquired a foam cell–like morphology. There was a strong correlation ( r =.87, P =.005) between the amount of iron added during the pre-exposure period and lipofuscin accumulation during the ensuing exposure to LDL in fresh, serum-free medium. Our results support our hypothesis and indicate that lysosomal iron may be exocytosed from HMDMs and promote oxidation and uptake of LDL and thus induce foam cell formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3