Vascular Superoxide Dismutase Deficiency Impairs Endothelial Vasodilator Function Through Direct Inactivation of Nitric Oxide and Increased Lipid Peroxidation

Author:

Lynch Sean M.1,Frei Balz1,Morrow Jason D.1,Roberts L. Jackson1,Xu Aiming1,Jackson Terence1,Reyna Ronald1,Klevay Leslie M.1,Vita Joseph A.1,Keaney John F.1

Affiliation:

1. From the Evans Memorial Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts (S.M.L., B.F., A.X., T.J., R.R., J.A.V., J.F.K.), the Departments of Pharmacology and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee (J.D.M., L.J.R.), and the United States Department of Agriculture, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (L.M.K.).

Abstract

Abstract Nitric oxide (NO) and superoxide are both constitutive products of the endothelium. Because NO is readily inactivated by superoxide, the bioactivity of endothelium-derived NO (EDNO) is dependent on local activity of superoxide dismutase (SOD). We examined the effects of chronic inhibition of copper-zinc SOD (CuZnSOD) using a rat model of dietary copper restriction. Male weanling Sprague-Dawley rats were fed a Cu-deficient diet and received either no Cu replacement (Cu-deficient) or Cu in the drinking water (Cu-sufficient). Compared with Cu-sufficient animals, Cu-deficiency was associated with a 68% reduction in CuZnSOD activity and a 58% increase in vascular superoxide as estimated by lucigenin chemiluminescence (both P <.05). Compared with Cu-sufficient animals, arterial relaxation in the thoracic aorta from Cu-deficient animals was 10-fold less sensitive to acetylcholine, a receptor-dependent EDNO agonist, but only 1.5-fold less sensitive to A23187, a receptor-independent EDNO agonist, and only 1.25-fold less sensitive to authentic NO (all P <.05). In contrast, acute inhibition of CuZnSOD with 10 mM diethyldithiocarbamate produced a more uniform reduction in sensitivity to acetylcholine (8-fold), A23187 (10-fold), and NO (4-fold; all P <.001). Cu-deficient animals demonstrated a 2.5-fold increase in plasma-esterified F 2 -isoprostanes, a stable marker of lipid peroxidation, that correlated inversely with arterial relaxation to acetylcholine ( R =−.83; P <.0009) but not A23187 or authentic NO. From these findings, we conclude that chronic inhibition of CuZnSOD inhibits EDNO-mediated arterial relaxation through two mechanisms, one being direct inactivation of NO and the other being lipid peroxidation that preferentially interrupts receptor-mediated stimulation of EDNO.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3