Hormone-Sensitive Lipase Overexpression Increases Cholesteryl Ester Hydrolysis in Macrophage Foam Cells

Author:

Escary Jean-Louis1,Choy Henry A.1,Reue Karen1,Schotz Michael C.1

Affiliation:

1. From the Lipid Research Laboratory, West Los Angeles VA Medical Center, and the Department of Medicine, University of California, Los Angeles, Calif.

Abstract

Abstract —Atherosclerosis is a complex physiopathologic process initiated by the formation of cholesterol-rich lesions in the arterial wall. Macrophages play a crucial role in this process because they accumulate large amounts of cholesterol esters (CEs) to form the foam cells that initiate the formation of the lesion and participate actively in the development of the lesion. Therefore, prevention or reversal of CE accumulation in macrophage foam cells could result in protection from multiple pathological effects. In this report, we show that the CE hydrolysis catalyzed by neutral cholesterol ester hydrolase (nCEH) can be modulated by overexpression of hormone-sensitive lipase (HSL) in macrophage foam cells. For these studies, RAW 264.7 cells, a murine macrophage cell line, were found to be a suitable model of foam cell formation. HSL expression and nCEH activity in these cells and in peritoneal macrophages were comparable. In addition, antibody titration showed that essentially all nCEH activity in murine macrophages was accounted for by HSL. To examine the effect of HSL overexpression on foam cell formation, RAW 264.7 cells were stably transfected with a rat HSL cDNA. The resulting HSL overexpression increased hydrolysis of cellular CEs 2- to 3-fold in lipid-laden cells in the presence of an acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor. Furthermore, addition of cAMP produced a 5-fold higher rate of CE hydrolysis in cholesterol-laden, HSL-overexpressing cells than in control cells and resulted in nearly complete hydrolysis of cellular CEs in only 9 hours, compared with <50% hydrolysis in control cells. Thus, HSL overexpression stimulated the net hydrolysis of CEs, leading to faster hydrolysis of lipid deposits in model foam cells. These data suggest that HSL overexpression in macrophages, alone or in combination with ACAT inhibitors, may constitute a useful therapeutic approach for impeding CE accumulation in macrophages in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3