Inhibition of Lecithin-Cholesterol Acyltransferase and Modification of HDL Apolipoproteins by Aldehydes

Author:

McCall Mark R.1,Tang Jean Y.1,Bielicki John K.1,Forte Trudy M.1

Affiliation:

1. From the Department of Molecular and Nuclear Medicine, Life Sciences Division, Lawrence Berkeley Laboratory, University of California at Berkeley.

Abstract

Abstract Experimental evidence suggests that aldehydes generated as a consequence of lipid peroxidation may be involved in the pathogenesis of atherosclerosis. It is well documented that aldehydes modify LDL; however, less is known concerning the effects of aldehydes on other plasma and interstitial fluid components. In the present study, we investigated the effects of five physiologically relevant aldehydes (acetaldehyde, acrolein, hexanal, 4-hydroxynonenal [HNE], and malondialdehyde [MDA]) on two key constituents of the antiatherogenic reverse cholesterol transport pathway, lecithin-cholesterol acyltransferase (LCAT) and HDL. Human plasma was incubated for 3 hours at 37°C with each one of the five aldehydes at concentrations ranging from 0.16 to 84 mmol/L. Dose-dependent decreases in LCAT activity were observed. The short-chain (acrolein) and long-chain (HNE) α,β-unsaturated aldehydes were the most effective LCAT inhibitors. Micromolar concentrations of these unsaturated aldehydes resulted in significant reductions in plasma LCAT activity. The short- and longer-chain saturated aldehydes acetaldehyde and hexanal and the dialdehyde MDA were considerably less effective at inhibiting LCAT than were acrolein and HNE. In addition to inhibiting LCAT, aldehydes increased HDL electrophoretic mobility and cross-linked HDL apolipoproteins. Cross-linking of apolipoproteins A-I and A-II required higher aldehyde concentrations than inhibition of LCAT. The α,β-unsaturated aldehydes acrolein and HNE were fourfold to eightfold more effective cross-linkers of apolipoproteins A-I and A-II than the other aldehydes studied. These data suggest that products of lipid peroxidation, especially unsaturated aldehydes, may interfere with normal HDL cholesterol transport by inhibiting LCAT and modifying HDL apolipoproteins.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference48 articles.

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3