Crystallization of Free Cholesterol in Model Macrophage Foam Cells

Author:

Kellner-Weibel G.1,Yancey P. G.1,Jerome W. G.1,Walser T.1,Mason R. P.1,Phillips M. C.1,Rothblat G. H.1

Affiliation:

1. From the Department of Biochemistry (G.K.-W., M.C.P., G.H.R.), MCP Hahnemann University, Philadelphia, Pa; the Department of Pathology (P.G.Y., W.G.J., T.W.), Wake Forest University School of Medicine, The Bowman Gray Campus, Winston-Salem, NC; and the Laboratory for Membrane Structure Studies (R.P.M.), MCP Hahnemann University, Pittsburgh, Pa.

Abstract

Abstract —The present study examined free cholesterol (FC) crystallization in macrophage foam cells. Model foam cells (J774 or mouse peritoneal macrophages [MPMs]) were incubated with acetylated low density lipoprotein and FC/phospholipid dispersions for 48 hours, resulting in the deposition of large stores of cytoplasmic cholesteryl esters (CEs). The model foam cells were then incubated for up to 5 days with an acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibitor (CP-113,818) in the absence of an extracellular FC acceptor to allow intracellular accumulation of FC. FC crystals of various shapes and sizes formed in the MPMs but not in the J774 macrophages. Examination of the MPM monolayers by microscopy indicated that the crystals were externalized rapidly after formation and thereafter continued to increase in size. Incubating J774 macrophages with 8-(4-chlorophenylthio)adenosine 3′:5′-cyclic monophosphate (CPT-cAMP) in addition to CP-113,818 caused FC crystal formation as a consequence of CPT-cAMP stimulation of CE hydrolysis and inhibition of cell growth. In addition, 2 separate cholesterol phases (liquid-crystalline and cholesterol monohydrate) in the plane of the membrane bilayer were detected after 31 hours of ACAT inhibition by the use of small-angle x-ray diffraction of J774 macrophage foam cells treated with CPT-cAMP. Other compounds reported to inhibit ACAT, namely progesterone (20 μg/mL) and N -acetyl- d -sphingosine (c 2 -ceramide, 10 μg/mL), induced cellular toxicity in J774 macrophage foam cells and FC crystallization when coincubated with CPT-cAMP. Addition of the extracellular FC acceptors apolipoproteins (apo) E and A-I (50 μg/mL) reduced FC crystal formation. In MPMs, lower cell density and frequent changes of medium were conducive to crystal formation. This may be due to “dilution” of apoE secreted by the MPMs and is consistent with our observation that the addition of exogenous apoE or apoA-I inhibits FC crystal formation in J774 macrophage foam cells cotreated with CP-113,818 plus CPT-cAMP. These data demonstrate that FC crystals can form from the hydrolysis of cytoplasmic stores of CEs in model foam cells. FC crystal formation can be modulated by the addition of extracellular FC acceptors or by affecting the cellular rate of CE hydrolysis. This process may contribute to the formation of FC crystals in atherosclerotic plaques.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3