Effects of Intravenous Infusion of Lipid-Free Apo A-I in Humans

Author:

Nanjee M.N.1,Crouse J.R.1,King J.M.1,Hovorka R.1,Rees S.E.1,Carson E.R.1,Morgenthaler J.-J.1,Lerch P.1,Miller N.E.1

Affiliation:

1. the Department of Cardiovascular Biochemistry, St Bartholomew's Hospital Medical College, London, UK (M.N.N., N.E.M.); the Section on Endocrinology and Metabolism, Department of Medicine, The Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (J.R.C., J.M.K.); the Centre for Measurement and Information in Medicine, Department of Systems Science, City University, London, UK (R.H., S.E.R., E.R.C.); and the Central Laboratory, Swiss Red Cross, Bern, Switzerland ((J.-J.M., P.L.).

Abstract

Apolipoprotein (apo) A-I is the principal protein component of the plasma high density lipoproteins (HDLs). Tissue culture studies have suggested that lipid-free apo A-I may, by recruiting phospholipids (PLs) and unesterified cholesterol from cell membranes, initiate reverse cholesterol transport and provide a nidus for the formation, via lipid-poor, pre-β–migrating HDLs, of spheroidal α-migrating HDLs. Apo A-I has also been shown to inhibit hepatic lipase (HL) and lipoprotein lipase (LPL) in vitro. To further study its functions and fate in vivo, we gave lipid-free apo A-I intravenously on a total of 32 occasions to six men with low HDL cholesterol (30 to 38 mg/dL) by bolus injection (25 mg/kg) and/or by infusion over 5 hours (1.25, 2.5, 5.0, and 10.0 mg·kg −1 ·h −1 ). The procedure was well tolerated: there were no clinical, biochemical, or hematologic changes, and there was no evidence of allergic, immunologic, or acute-phase responses. The 5-hour infusions increased plasma total apo A-I concentration in a dose-related manner by 10 to 50 mg/dL after which it decreased, with a half-life of 15 to 54 hours. Coinfusion of Intralipid reduced the clearance rate. The apparent volume of distribution exceeded the known extracellular space in humans, suggesting extensive first-pass clearance by one or more organs. No apo A-I appeared in the urine. Increases in apo A-I mass were confined to the pre-β region on crossed immunoelectrophoresis of plasma and to HDL-size particles on size exclusion chromatography. Increases were recorded in HDL PL, but not in HDL unesterified or esterified cholesterol. Increases also occurred in LDL PL and in very low density lipoprotein cholesterol, triglycerides, and PL but not in plasma total apo B concentration. These results can all be explained by combined inhibition of HL and LPL activities. Owing to the effects that this would have had on HDL metabolism, no conclusions can be drawn from these data about the role of lipid-free apo A-I in the removal of PL and cholesterol from peripheral tissues in humans. The kinetic data suggest that the fractional catabolic rate of lipid-free apo A-I exceeds that of spheroidal HDLs and is reduced in the presence of surplus PL.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3