Oxidized LDL Can Induce Macrophage Survival, DNA Synthesis, and Enhanced Proliferative Response to CSF-1 and GM-CSF

Author:

Hamilton John A.1,Myers Damian1,Jessup Wendy1,Cochrane Fiona1,Byrne Robert1,Whitty Genevieve1,Moss Suzanne1

Affiliation:

1. From the Inflammation Research Centre, University of Melbourne, The Royal Melbourne Hospital, Parkville (J.A.H., D.M., F.C., R.B., G.W., S.M.), and the Heart Research Institute, Camperdown (W.J.), Australia.

Abstract

Abstract —Modification of low density lipoprotein (LDL), eg, by oxidation, has been proposed as being important for the formation of foam cells and therefore for the development of atherosclerotic plaques. There are a number of reports showing that macrophage-derived foam cells can proliferate in both human and animal lesions, particularly in the early phase of the disease and possibly involving macrophage-colony stimulating factor (M-CSF, or CSF-1). We studied the in vitro effects of oxidized LDL (ox-LDL) on murine bone marrow–derived macrophages (BMMs), a cell population with a high proliferative capacity in vitro in response to CSF-1 and a dependence for survival on the presence of this growth factor. We report here that treatment of BMMs with low doses of ox-LDL, but not with native LDL, led to cell survival, DNA synthesis, and an enhanced response to the proliferative actions of CSF-1 and granulocyte macrophage-CSF (GM-CSF); the effects were dependent on the degree of LDL oxidation. For CSF-1, a synergistic effect was noticeable at suboptimal doses. The effect of ox-LDL occurred even in the absence of endogenous CSF-1 or GM-CSF. Our findings suggest that ox-LDL, and possibly other modified forms of LDL, could maintain macrophage (and foam cell) survival and therefore lengthen their tenure in a plaque; the modified LDL could also cause local macrophage proliferation or “prime” them so that they could proliferate better in response to CSF-1 (and GM-CSF) concentrations that may be present in the atheroma.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3