Affiliation:
1. Department of Medicine, University of California-San Diego, La Jolla 92093.
Abstract
Increasing evidence indicates that low density lipoprotein (LDL) has to be modified to induce foam cell formation. One such modification, oxidation of LDL, generates a number of highly reactive short chain-length aldehydic fragments of oxidized fatty acids capable of conjugating with lysine residues of apoprotein B. By immunizing animals with homologous malondialdehyde-modified LDL (MDA-LDL), 4-hydroxynonenal-LDL (4-HNE-LDL), and Cu+(+)-oxidized LDL, we developed polyvalent and monoclonal antibodies against three epitopes found in oxidatively modified LDL. The present article characterizes an antiserum and monoclonal antibody (MAL-2 and MDA2, respectively) specific for MDA-lysine, and an antiserum and monoclonal antibody (HNE-6 and NA59, respectively) specific for 4-HNE-lysine. In addition, a monoclonal antibody (OLF4-3C10) was developed against an as yet undefined epitope generated during Cu++ oxidation of LDL. With these antibodies, we demonstrated that MDA-lysine and 4-HNE-lysine adducts develop on apo-lipoprotein B during copper-induced oxidation of LDL in vitro. The application of these antibodies for immunocytochemical demonstration of oxidized lipoproteins in atherosclerotic lesions of progressive severity is described in the companion article. These antibodies should prove useful in studying the role of oxidatively modified lipoproteins as well as other oxidatively modified proteins in atherogenesis.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
572 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献