Overexpression of Apolipoprotein E3 in Transgenic Rabbits Causes Combined Hyperlipidemia by Stimulating Hepatic VLDL Production and Impairing VLDL Lipolysis

Author:

Huang Yadong1,Ji Zhong-Sheng1,Brecht Walter J.1,Rall Stanley C.1,Taylor John M.1,Mahley Robert W.1

Affiliation:

1. From the Gladstone Institute of Cardiovascular Disease (Y.H., Z.-S..J., W.J.B., S.C.R., J.M.T., R.W.M.), the Cardiovascular Research Institute (Y.H., J.M.T., R.W.M.), and the Departments of Physiology (J.M.T.), Pathology (R.W.M.), and Medicine (R.W.M.), University of California, San Francisco.

Abstract

Abstract —The differential effects of overexpression of human apolipoprotein (apo) E3 on plasma cholesterol and triglyceride metabolism were investigated in transgenic rabbits expressing low (<10 mg/dL), medium (10 to 20 mg/dL), or high (>20 mg/dL) levels of apoE3. Cholesterol levels increased progressively with increasing levels of apoE3, whereas triglyceride levels were not significantly affected at apoE3 levels up to 20 mg/dL but were markedly increased at levels of apoE3 >20 mg/dL. The medium expressers had marked hypercholesterolemia (up to 3- to 4-fold over nontransgenics), characterized by an increase in low density lipoprotein (LDL) cholesterol, while the low expressers had only slightly increased plasma cholesterol levels. The medium expressers displayed an 18-fold increase in LDL but also had a 2-fold increase in hepatic very low density lipoprotein (VLDL) triglyceride production, an 8-fold increase in VLDL apoB, and a moderate decrease in the ability of the VLDL to be lipolyzed. However, plasma clearance of VLDL was increased, likely because of the increased apoE3 content. The increase in LDL appears to be due to an enhanced competition of VLDL for LDL receptor binding and uptake, resulting in the accumulation of LDL. The combined hyperlipidemia of the apoE3 high expressers (>20 mg/dL) was characterized by a 19-fold increase in LDL cholesterol but also a 4-fold increase in hepatic VLDL triglyceride production associated with a marked elevation of plasma VLDL triglycerides, cholesterol, and apoB100 (4-, 9-, and 25-fold over nontransgenics, respectively). The VLDL from the high expressers was much more enriched in apoE3 and markedly depleted in apoC-II, which contributed to a >60% inhibition of VLDL lipolysis. The combined effects of stimulated VLDL production and impaired VLDL lipolysis accounted for the increases in plasma triglyceride and VLDL concentrations in the apoE3 high expressers. The hyperlipidemic apoE3 rabbits have phenotypes similar to those of familial combined hyperlipidemia, in which VLDL overproduction is a major biochemical feature. Overall, elevated expression of apoE3 appears to determine plasma lipid levels by stimulating hepatic VLDL production, enhancing VLDL clearance, and inhibiting VLDL lipolysis. Thus, the differential expression of apoE may, within a rather narrow range of concentrations, play a critical role in modulating plasma cholesterol and triglyceride levels and may represent an important determinant of specific types of hyperlipoproteinemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference39 articles.

1. Apolipoprotein E: Cholesterol Transport Protein with Expanding Role in Cell Biology

2. Mahley RW Rall SC Jr. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In: Scriver CR Beaudet AL Sly WS Valle D eds. The Metabolic and Molecular Bases of Inherited Disease . 7th ed. New York NY: McGraw-Hill; 1995:1953–1980.

3. Role of Heparan Sulfate Proteoglycans and the LDL Receptor-Related Protein in Remnant Lipoprotein Metabolism

4. The role of apolipoprotein E genetic variants in lipoprotein disorders

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3