Affiliation:
1. From the Department of Medicine, University of California, San Diego.
Abstract
Abstract
—Fully oxidized LDL (OxLDL) is believed to contribute to atherogenesis in part by virtue of uptake into macrophages via specific scavenger receptors. This phenomenon results in the formation of cholesterol-loaded foam cells, a major component of atherosclerotic lesions. The present study is directed at examining the effects of OxLDL and minimally oxidized LDL (MM-LDL) on scavenger receptor expression and activity in mouse peritoneal resident macrophages. Macrophages were preincubated with MM-LDL or OxLDL at concentrations of 25 or 50 μg/mL for 24 to 48 hours, after which their ability to bind and take up
125
I-OxLDL or
125
I-acetylated LDL (AcLDL) was determined. MM-LDL pretreatment induced a clear increase of cell association and degradation of
125
I-OxLDL and
125
I-AcLDL. Pretreatment with OxLDL also enhanced scavenger receptor activity, but to a lesser degree. Neither native LDL nor AcLDL had any effect. Scatchard analysis showed that preincubation with 50 μg/mL MM-LDL for 48 hours increased the B
max
of
125
I-OxLDL and
125
I-AcLDL by 139% and 154%, respectively, without significantly changing their affinity. Lipids extracted from MM-LDL also significantly induced scavenger receptor activity, but to a lesser extent than did intact MM-LDL. MM-LDL pretreatment increased both mRNA levels and protein levels of scavenger receptor A, CD36, and macrosialin. On the other hand, OxLDL pretreatment increased expression of macrosialin only. These results, showing that MM-LDL can upregulate scavenger receptor expression in mouse resident peritoneal macrophages, suggest that clearance of OxLDL by macrophages in lesions is more effective, in part because the OxLDL precursor, MM-LDL, primes the macrophage for foam cell generation.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
146 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献