Contrary Effects of Lightly and Strongly Oxidized LDL With Potent Promotion of Growth Versus Apoptosis on Arterial Smooth Muscle Cells, Macrophages, and Fibroblasts

Author:

Björkerud Barbro1,Björkerud Sören1

Affiliation:

1. From the Department of Pathology, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden.

Abstract

Abstract The inhibition of experimental atherosclerosis by antioxidants and the presence of oxidized LDL (oxLDL) in atherosclerotic lesions indicate that oxLDL may play what is perhaps a primary role in atherogenesis. LDL promotes the growth of arterial smooth muscle cells (SMCs), and oxLDL has cytotoxic effects. Since excessive intimal growth alternating with necrosis is typical of atherosclerotic lesions, we wondered whether these extreme changes in the lesions could be related to the extreme effects of LDL and oxLDL on cells. We therefore examined the effects of increasing LDL oxidation on its capacity to induce cell growth or cell death and whether the latter could be due to apoptosis. Cells of the types present in the atherosclerotic artery were used, ie, SMCs (human arterial), macrophages (human macrophage-like cell line THP-1), and human fibroblasts. Growth was evaluated by measuring the synthesis of DNA and culture size (MTT method) and apoptosis by using the in situ labeling of internucleosomally degraded DNA and, in the case of SMCs, the appearance of chromatin condensation. The oxidation of LDL was mediated by UV or Fe ions. Shortly oxidized LDL had a markedly increased growth-promoting effect on all cell types. With prolonged exposure to UV, but not to Fe, LDL became increasingly cytotoxic, and this toxicity was paralleled by the appearance of apoptosis in all cell types. After prolonged UV treatment, low-molecular-weight material from the partially degraded LDL was responsible for the induction of apoptosis. The dual effect of oxLDL, ie, its strong growth-promoting effect or the induction of cell death by apoptosis, depending on the degree of change by oxidation, is compatible with the notion that oxLDL plays a role not only in atherogenesis but also more extensively in the development of the structure typical of the atherosclerotic lesion, with focal excessive growth alternating with necrosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3