Affiliation:
1. Lilly Laboratories for Clinical Research, Eli Lilly & Company, Indianapolis, IN 46285.
Abstract
The urokinase-type plasminogen activator receptor (u-PAR) was demonstrated on cultured smooth muscle cells (SMCs) of bovine aorta. Binding of 125I-urokinase-type plasminogen activator (u-PA) was concentration dependent and saturable within 45-60 minutes. A similar concentration and time dependence was found in functional plasminogen activation studies. Human two-chain high-molecular-weight u-PA and its proenzyme (pro-u-PA) bound specifically with identical affinity (Kd). Activation of pro-u-PA was strongly accelerated on binding to SMCs and occurred only in the presence of plasminogen on the cell surface. A 100-fold molar excess of unlabeled high-molecular-weight u-PA effectively blocked binding of the radiolabeled ligands; tissue-type plasminogen activator, plasminogen, low-molecular-weight u-PA, and unrelated proteins did not. 125I-u-PA binding was abolished by a monoclonal antibody against the specific u-PA sequence responsible for u-PAR binding. Binding of u-PA sharply decreased on SMC exposure to phosphatidylinositol-specific phospholipase C, confirming the glycan phospholipid cell anchorage of u-PAR. Bovine and human alpha-thrombin (240 nM) increased the binding of 125I-u-PA fivefold, translating into an increase in the number of sites per cell from about 10(5) to 5 x 10(5) without significant change in the Kd (1.29 +/- 0.39 nM). Active site blockade of thrombin by D-Phe-Pro-Arg-chloromethyl ketone resulted in the total loss of stimulatory activity, as did the use of the inactive active site thrombin mutant, S205A. Hirugen (100 microM), which blocks the anion-binding exosite of thrombin, blocked u-PAR stimulating activity. Thus, both the catalytic activity and integrity of the exosite are important for thrombin's stimulatory activity. Other SMC mitogens (epidermal growth factor, transforming growth factor-beta 1, basic fibroblast growth factor, platelet-derived growth factor, and phorbol 12-myristate 13-acetate) increased u-PAR expression on SMCs six- to 20-fold while concomitantly increasing Kd four- to 10-fold. In all cases the induction of u-PAR was dependent on de novo protein synthesis. These observations assign a possible role for thrombin and other mitogens in u-PAR regulation, thereby influencing the pericellular proteolysis that is important in SMC migration and atheromatous plaque development.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献