HDL and ApoA Prevent Cell Death of Endothelial Cells Induced by Oxidized LDL

Author:

Suc Isabelle1,Escargueil-Blanc Isabelle1,Troly Muriel1,Salvayre Robert1,Nègre-Salvayre Anne1

Affiliation:

1. From the Department of Biochemistry, INSERM U.466, IFR Louis Bugnard, University Paul Sabatier, Toulouse, France.

Abstract

Abstract We have previously demonstrated that toxic doses of mildly oxidized LDL evokes in cultured cells a delayed and sustained rise of cytosolic [Ca 2+ ], eliciting in turn irreversible cell damage and leading finally to cell death. HDL and delipidated apolipoprotein (apo) A prevented effectively the toxic effect of oxidized LDL to bovine aortic endothelial cells, in a time- and dose-dependent manner. The major part of the protective effect was mimicked by purified apoA-I, whereas purified apoA-II exhibited only very low protective activity. The protective effect was independent of the paraoxonase-linked HDL activity. The protective effect of HDL is independent of the contact of HDL with oxidized LDL, as shown by preincubation of oxidized LDL with HDL or apoA. In contrast, the protective effect was dependent on the integrity of apoA and on the contact of HDL with cells, thus suggesting that HDL acts directly on cells by enhancing their resistance against oxidized LDL. Preincubation experiments show that the protective effect is dependent on the duration of the contact of cells with HDL (maximal effect observed after 12 to 16 hours’ preincubation), is also dependent on protein synthesis, and is persistent for at least 48 hours after the end of the contact of HDL with cells. Finally, effective concentrations of HDL inhibit the Ca 2+ peak, which is directly involved in the cytotoxic effect of oxidized LDL, as shown by the inhibitory effect of Ca 2+ chelators. All together, these results suggest that HDL, mainly apoA-I, increases the resistance of endothelial cells against oxidized LDL and prevents its toxic (apoptotic) effect by blocking the pathogenic intracellular signaling (culminating in sustained Ca 2+ rise) involved in cell death.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3