Smooth Muscle Cell Heterogeneity in Pulmonary and Systemic Vessels

Author:

Frid Maria G.1,Dempsey Edward C.1,Durmowicz Anthony G.1,Stenmark Kurt R.1

Affiliation:

1. From the Cardiovascular Pulmonary and Developmental Biology Research Laboratories, University of Colorado Health Sciences Center (M.G.F., E.C.D., A.G.D., K.R.S.), and the VA Medical Center (E.C.D.), Denver, Colo.

Abstract

Abstract Experimental evidence is rapidly accumulating which demonstrates that the arterial media in both pulmonary and systemic vessels is not composed of a phenotypically homogeneous population of smooth muscle cells (SMCs) but rather of heterogeneous subpopulations of cells with unique developmental lineages. In vivo and in vitro observations strongly suggest that marked differences in the phenotype, growth, and matrix-producing capabilities of phenotypically distinct SMC subpopulations exist and that these differences are intrinsic to the cell type. These data also suggest that differential proliferative and matrix-producing capabilities of distinct SMC subpopulations govern, at least in part, the pattern of abnormal cell proliferation and matrix protein synthesis observed in the pathogenesis of vascular disease. Within the pulmonary circulation, the observation that the isolated medial SMC subpopulations exhibit differential proliferative responses to hypoxic exposure is important, since this in vitro cell-model system can now be used to better understand the mechanisms that regulate increased responsiveness of specific medial cell subpopulations to low oxygen concentrations. Our data also support the idea that protein kinase C is likely to be one important determinant of differential cell growth responses to hypoxia. The data also suggest differential involvement of specific arterial SMC subpopulations in the elastogenic responses of the vessel wall to injury. We believe that a better understanding of the mechanisms contributing to the unique behavior of specific arterial cell subpopulations will provide important future directions for therapies aimed at preventing abnormal cell replication and matrix protein synthesis in vascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3