Growth and Cell Cycle Abnormalities of Fibroblasts From Tangier Disease Patients

Author:

Drobnik Wolfgang1,Liebisch Gerhard1,Biederer Carola1,Trümbach Barbara1,Rogler Gerhard1,Müller Peter1,Schmitz Gerd1

Affiliation:

1. From the Institut für Klinische Chemie und Laboratoriumsmedizin, Universität Regensburg, Regensburg, Federal Republic of Germany.

Abstract

Abstract—We have investigated the abnormal proliferation and morphology of fibroblasts from patients with Tangier disease (TD), a high density lipoprotein (HDL) deficiency syndrome that is characterized by impairment of HDL3-mediated lipid efflux and Gi-protein–mediated signaling via phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase D (PLD). TD fibroblasts displayed a 30% to 50% reduced in vitro growth rate and a 1.6-fold increased cell surface area. The response to different mitogens was diminished, and asynchronously growing TD fibroblasts showed 4.4±0.3% S-phase and 19.1±0.5% G2/M-phase cells compared with 9.7±0.6% and 7.8±0.5%, respectively, in controls. Monensin, but not brefeldin A, induced an S- and G2/M-phase distribution in control cells similar to that found in TD fibroblasts. This effect of monensin was accompanied by an increase of ceramide levels in controls, whereas TD fibroblasts already had a 2.5-fold increased basal ceramide concentration. Incubation of control cells with C2 ceramide andthreo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) mimicked the effect of monensin on the cell cycle. The inhibition of neither Giprotein function by pertussis toxin nor PLD by butanol resulted in a G2/M-phase arrest. Propranolol, known to increase phosphatidic acid levels, was ineffective in reversing the G2/M-phase arrest in TD fibroblasts. In addition, cDNA sequences and mRNA expression of the participants of PI-PLC or PLD signaling, ie, G-protein subunits αi1, αi2, and αi3; phosphatidylinositol transfer proteins-α and -β; and ADP ribosylation factors 1 and 3 were found to be normal. Thus, growth and cell cycle abnormalities in TD fibroblasts are likely to be related to impaired Golgi function and sphingolipid signaling rather than inoperative G-protein signal transduction. Because PDMP was also found to decrease HDL3-mediated lipid efflux in control but not TD fibroblasts, similar pathways seem to be involved in the disturbances of lipid transport and growth retardation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3