Expression of LR11, a Mosaic LDL Receptor Family Member, Is Markedly Increased in Atherosclerotic Lesions

Author:

Kanaki Tatsuro1,Bujo Hideaki1,Hirayama Satoshi1,Ishii Itsuko1,Morisaki Nobuhiro1,Schneider Wolfgang Johann1,Saito Yasushi1

Affiliation:

1. From the Second Department of Internal Medicine, School of Medicine (T.K., H.B., S.H., N.M., Y.S.), and the Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences (I.I.), Chiba University, Japan; and the Department of Molecular Genetics, Biocenter and University of Vienna, Vienna, Austria (S.H., W.J.S.).

Abstract

Abstract —Receptors belonging to the LDL receptor (LDLR) family are thought to play key roles in lipoprotein metabolism in a variety of tissues, including the arterial wall. Here, we report that the expression of a 250-kDa mosaic LDLR family member, which we called LR11 for the presence of 11 ligand-binding repeats, is markedly induced during the process of atherogenesis in 2 animal models. Analysis by reverse transcription–polymerase chain reaction and RNase protection assays revealed that LR11 transcript levels rise in rabbit aortas displaying atheromatous lesions after the rabbits have been fed a high-cholesterol diet. Immunohistochemistry demonstrated that the highest induction of LR11 occurs in intimal smooth muscle cells (SMCs), followed by medial SMCs close to the intimal border of the atheromatous lesions. Experimental intimal hyperplasia by endothelial denudation showed that LR11 mRNA levels were also increased in the arteries after balloon injury, with the transcripts localized primarily in the hyperplastic intimal layer. In agreement with the correlation of LR11 induction during increased cell proliferation, cultured SMCs showed an increase in LR11 expression in the proliferative phase. Furthermore, Northern and Western blot analyses showed that medium conditioned by the monocyte-macrophage cell line THP-1 enhanced LR11 expression in cultured SMCs. These findings suggest that upregulation of LR11 might be contributing to the pathological roles of intimal and medial SMCs during arteriosclerotic lesion development and provide the first insight into the as yet unknown functional significance of this intriguing LDLR family member.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3