Natriuretic Factors and Nitric Oxide Suppress Plasminogen Activator Inhibitor-1 Expression in Vascular Smooth Muscle Cells

Author:

Bouchie Julie L.1,Hansen Hans1,Feener Edward P.1

Affiliation:

1. From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Mass.

Abstract

Abstract —Increased expression of plasminogen activator inhibitor-1 (PAI-1) has been reported in atherosclerotic and balloon-injured vessels. Little is known regarding the factors and mechanisms that may negatively regulate PAI-1 expression. In this report, the effect of cGMP-coupled vasoactive hormones, including natriuretic factors and nitric oxide, on the regulation of PAI-1 expression in vascular smooth muscle cells was examined. Atrial natriuretic factor 1–28 (ANF) and C-type natriuretic factor-22 (CNP) reduced angiotensin II (Ang II)– and platelet-derived growth factor–stimulated PAI-1 mRNA expression in rat aortic smooth muscle cells by 50% to 70%, with corresponding reductions in PAI-1 protein release. Treatment of human aortic smooth muscle cells with CNP similarly inhibited both platelet-derived growth factor–induced PAI-1 mRNA expression and PAI-1 protein release by 50%. Dose-response studies revealed that the inhibitory effects of CNP and ANF on PAI-1 expression were concentration dependent, with IC 50 s of ≈1 nmol/L for both natriuretic peptides. Ang II–stimulated PAI-1 expression was also inhibited by the nitric oxide donor S -nitroso- N -acetylpenicillamine. The membrane-permeant cGMP analogue 8-Br-cGMP reduced Ang II–stimulated PAI-1 expression by 60%, and an inhibitor of soluble guanylyl cyclase (1 H -[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) significantly impaired the inhibitory effects of S -nitroso- N -acetylpenicillamine on Ang II–stimulated PAI-1 expression. Studies of PAI-1 mRNA stability in cells treated with actinomycin D showed that ANF did not alter PAI-1 mRNA half-life, suggesting that natriuretic factors reduce PAI-1 transcription. These data show that natriuretic factors and nitric oxide, via a cGMP-dependent mechanism, inhibit PAI-1 synthesis in vascular smooth muscle cells. Thus, cGMP-coupled vasoactive hormones may play an important role in suppressing vascular PAI-1 expression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3