Methodological Development of a Clonogenic Assay to Determine Endothelial Progenitor Cell Potential

Author:

Masuda Haruchika1,Alev Cantas1,Akimaru Hiroshi1,Ito Rie1,Shizuno Tomoko1,Kobori Michiru1,Horii Miki1,Ishihara Toshiya1,Isobe Kazuya1,Isozaki Mitsuhiro1,Itoh Johbu1,Itoh Yoshiko1,Okada Yoshinori1,McIntyre Brendan A.S.1,Kato Shunichi1,Asahara Takayuki1

Affiliation:

1. From the Department of Regenerative Medicine Science, Division of Basic Clinical Science (H.M., R.I., T.S., M.K., T.I., K.I., T.A.), Department of Clinical Pharmacology, Division of Basic Clinical Science (M.I.), and Departments of Cell Transplantation & Regenerative Medicine (S.K.), the Teaching and Research Support Center (J.I., Y.I., Y.O.), Tokai University School of Medicine, Isehara, Kanagawa, Japan; the Laboratory for Early Embryogenesis (C.A., B.A.M.), RIKEN Center for Developmental...

Abstract

The precise and conceptual insight of circulating endothelial progenitor cell (EPC) kinetics is hampered by the absence of an assay system capable of evaluating the EPC differentiation cascade. An assay system for EPC colony formation was developed to delineate circulating EPC differentiation. EPC colony-forming assay using semisolid medium and single or bulk CD133 + cells from umbilical cord blood exhibited the formation of two types of attaching cell colonies made of small or large cells featuring endothelial lineage potential and properties, termed small EPC colony-forming units and large EPC colony-forming units, respectively. In vitro and in vivo assays of each EPC colony-forming unit cell revealed a differentiation hierarchy from small EPC to large EPC colonies, indicating a primitive EPC stage with highly proliferative activity and a definitive EPC stage with vasculogenic properties, respectively. Experimental comparison with a conventional EPC culture assay system disclosed EPC colony-forming unit cells differentiate into noncolony-forming early EPC. The fate analysis of single CD133 + cells into the endothelial and hematopoietic lineage was achieved by combining this assay system with a hematopoietic progenitor assay and demonstrated the development of colony-forming EPC and hematopoietic progenitor cells from a single hematopoietic stem cell. EPC colony-forming assay permits the determination of circulating EPC kinetics from single or bulk cells, based on the evaluation of hierarchical EPC colony formation. This assay further enables a proper exploration of possible links between the origin of EPC and hematopoietic stem cells, representing a novel and powerful tool to investigate the molecular signaling pathways involved in EPC biology.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3