Interrelationship Between Cardiac Hypertrophy, Heart Failure, and Chronic Kidney Disease

Author:

Dickhout Jeffrey G.1,Carlisle Rachel E.1,Austin Richard C.1

Affiliation:

1. From the Department of Medicine, Division of Nephrology, McMaster University and St Joseph's Healthcare Hamilton, Ontario, Canada.

Abstract

Synthesis of transmembrane and secretory proteins occurs within the endoplasmic reticulum (ER) and is extremely important in the normal functioning of both the heart and kidney. The dysregulation of protein synthesis/processing within the ER causes the accumulation of unfolded proteins, thereby leading to ER stress and the activation of the unfolded protein response. Sarcoplasmic reticulum/ER Ca 2+ disequilibrium can lead to cardiac hypertrophy via cytosolic Ca 2+ elevation and stimulation of the Ca 2+ /calmodulin, calcineurin, NF-AT3 pathway. Although cardiac hypertrophy may be initially adaptive, prolonged or severe ER stress resulting from the increased protein synthesis associated with cardiac hypertrophy can lead to apoptosis of cardiac myocytes and result in reduced cardiac output and chronic heart failure. The failing heart has a dramatic effect on renal function because of inadequate perfusion and stimulates the release of many neurohumoral factors that may lead to further ER stress within the heart, including angiotensin II and arginine–vasopressin. Renal failure attributable to proteinuria and uremia also induces ER stress within the kidney, which contributes to the transformation of tubular epithelial cells to a fibroblast-like phenotype, fibrosis, and tubular cell apoptosis, further diminishing renal function. As a consequence, cardiorenal syndrome may develop into a vicious circle with poor prognosis. New therapeutic modalities to alleviate ER stress through stimulation of the cytoprotective components of the unfolded protein response, including GRP78 upregulation and eukaryotic initiation factor 2α phosphorylation, may hold promise to reduce the high morbidity and mortality associated with cardiorenal syndrome.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3