Differential Regulation of Proteasome Function in Isoproterenol-Induced Cardiac Hypertrophy

Author:

Drews Oliver1,Tsukamoto Osamu1,Liem David1,Streicher John1,Wang Yibin1,Ping Peipei1

Affiliation:

1. From the Departments of Physiology and Medicine (O.D., D.L., P.P.), Anesthesiology (J.S., Y.W.), David Geffen School of Medicine, University of California, Los Angeles, CA, USA; and Department of Cardiovascular Medicine (O.T.), National Cardiovascular Center, Osaka, Japan.

Abstract

Rationale: Proteasomal degradation is altered in many disease phenotypes including cardiac hypertrophy, a prevalent condition leading to heart failure. Our recent investigations identified heterogeneous subpopulations of proteasome complexes in the heart and implicated multiple mechanisms for their regulation. Objective: The study aimed at identification of molecular mechanisms changing proteasome function in the hypertrophic heart. Method and Results: Proteasome function, expression, and assembly were analyzed during the development of cardiac hypertrophy induced by β-adrenergic stimulation. The analysis revealed, for the first time, divergent regulation of proteasome function in cardiac hypertrophy. Proteasome complexes have 3 different proteolytic activities, which are ATP-dependent for 26S complexes (19S assembled with 20S) and ATP-independent for 20S core particles. The 26S activities were enhanced in hypertrophic hearts, partially because of increased expression and assembly of 19S subunits with 20S core complexes. In contrast, caspase- and trypsin-like 20S activities were significantly decreased. Activation of endogenous cAMP-dependent protein kinase (PKA) rescued the depressed 20S functions, supporting the notion that PKA signaling is a positive regulator of protein degradation in the heart. Chymotrypsin-like 20S activity was stably maintained during cardiac remodeling, indicating a switch in proteasome subpopulations, which was supported by altered expression and incorporation of inducible β subunits. Conclusions: Three novel mechanisms for the regulation of proteasome activities were discovered in the development of cardiac hypertrophy: (1) increased incorporation of inducible subunits in 20S proteasomes; (2) enhanced 20S sensitivity to PKA activation; and (3) increased 26S assembly. PKA modulation of proteasome complexes may provide a novel therapeutic avenue for restoration of cardiac function in the diseased myocardium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3