Nonsense-Mediated mRNA Decay and Ubiquitin–Proteasome System Regulate Cardiac Myosin-Binding Protein C Mutant Levels in Cardiomyopathic Mice

Author:

Vignier Nicolas1,Schlossarek Saskia1,Fraysse Bodvael1,Mearini Giulia1,Krämer Elisabeth1,Pointu Hervé1,Mougenot Nathalie1,Guiard Josiane1,Reimer Rudolph1,Hohenberg Heinrich1,Schwartz Ketty1,Vernet Muriel1,Eschenhagen Thomas1,Carrier Lucie1

Affiliation:

1. From the Institut National de la Santé et de la Recherche Médicale (N.V., B.F., K.S., L.C.), U582, U974, Paris, France; University Pierre et Marie Curie-Paris6, Unité Mixte de Recherche S974 (N.V., B.F., N.M., L.C.), Centre National de la Recherche Scientifique Unité Mixte de Recherche 7215, Institut de Myologie, IFR14, Paris, France; Institute of Experimental and Clinical Pharmacology and Toxicology (S.S., G.M., E.K., T.E., L.C.), Cardiovascular Research Center, University Medical Center...

Abstract

Rationale: Mutations in the MYBPC3 gene encoding cardiac myosin-binding protein (cMyBP)-C are frequent causes of hypertrophic cardiomyopathy, but the mechanisms leading from mutations to disease remain elusive. Objective: The goal of the present study was therefore to gain insights into the mechanisms controlling the expression of MYBPC3 mutations. Methods and Results: We developed a cMyBP-C knock-in mouse carrying a point mutation. The level of total cMyBP-C mRNAs was 50% and 80% lower in heterozygotes and homozygotes, respectively. Surprisingly, the single G>A transition on the last nucleotide of exon 6 resulted in 3 different mutant mRNAs: missense (exchange of G for A), nonsense (exon skipping, frameshift, and premature stop codon) and deletion/insertion (as nonsense but with additional partial retention of downstream intron, restoring of the reading frame, and almost full-length protein). Inhibition of nonsense-mediated mRNA decay in cultured cardiac myocytes or in vivo with emetine or cycloheximide increased the level of nonsense mRNAs severalfold but not of the other mRNAs. By using sequential protein fractionation and a new antibody directed against novel amino acids produced by the frameshift, we showed that inhibition of the proteasome with epoxomicin via osmotic minipumps increased the level of (near) full-length mutants but not of truncated proteins. Homozygotes exhibited myocyte and left ventricular hypertrophy, reduced fractional shortening, and interstitial fibrosis; heterozygotes had no major phenotype. Conclusions: These data reveal (1) an unanticipated complexity of the expression of a single point mutation in the whole animal and (2) the involvement of both nonsense-mediated mRNA decay and the ubiquitin–proteasome system in lowering the level of mutant proteins.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3