How Structure, Ca Signals, and Cellular Communications Underlie Function in Precapillary Arterioles

Author:

Borisova Lyudmyla1,Wray Susan1,Eisner David A.1,Burdyga Theodor1

Affiliation:

1. From the Physiology Department (L.B., S.W., T.B.), School of Biomedical Sciences, University of Liverpool; and Unit of Cardiac Physiology (D.E.), University of Manchester, United Kingdom.

Abstract

Rationale : Precapillary arterioles control blood flow to tissues and their correct function is vital. However, their small size has limited study and little is known concerning the calcium signals in their endothelial and muscle cells and how these relate to function. Objective : We aimed to investigate whether these small vessels are specialized in terms of structure and calcium signaling. Methods and Results : Using in situ confocal imaging we have studied the ultrastructure, Ca signaling and coordination of contraction in precapillary arterioles in ureter and vas deferens. We have compared the data to that from a small mesenteric artery. In the precapillary arteriole, 1 myocyte covers a ≈10-μm length, and contraction of this single cell can decrease the diameter of this segment. In the mesenteric artery, more than 20 myocytes are required for this. In the precapillary arteriole, Ca signals arise solely from Ca release from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate-induced Ca release and not via ryanodine receptors. Agonist-induced Ca signals do not require Ca entry into the cell, do not spread or synchronize with neighboring cells, and are unaffected by endothelial stimulation, thereby allowing local control. This contrasts with the mesenteric artery, where Ca entry and ryanodine receptors are important and stimulation of the endothelium inhibits myocyte Ca signals and contraction. Conclusions : These data reveal the structural and signaling specializations underlying how blood flow is locally regulated, provide new insight into control of microcirculation, and provide a framework to explain its vulnerability to disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3